
Waves in a Shock Tube

Ivan Christov
c© February 25, 2005

Abstract. This paper discusses linear-wave solutions and simple-wave solutions to the Navier–

Stokes equations for an inviscid and compressible fluid in one spatial dimension and one time

dimension. We derive wave solutions and study their validity for the initial-boundary-value

problem of a shock tube. We solve the initial-boundary-value problem in three cases: a receding

piston, an advancing piston, and an oscillating piston.

1. Introduction. The shock-tube problem is often encountered in engineering appli-
cations involving pistons. A shock tube is a pipe with a moving boundary, such as a
piston, and fluid on one side of the boundary. In this paper, we describe the one-
dimensional wave motion of the fluid in the tube as the piston compresses or rarefies
the fluid.

In particular, we discuss the creation and propagation of shock waves. Shock waves

are strong discontinuities in the density profile and the velocity profile of the fluid. In
order to study the shock waves, we assume the fluid is inviscid, because viscosity dissi-
pates shocks. Furthermore, we assume the fluid is compressible, because compressibility
is required for waves to propagate.

Specifically, this paper considers the problem illustrated schematically in Figure 1-1.
In this illustration, u(x, t) is the velocity profile, ρ(x, t) is the density profile, and Up is
the piston speed.

Figure 1-1. Schematic of the problem.

We make the following assumptions:

1. The tube is infinite in the x-direction; so we can neglect reflections of waves at
the ends.
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2. The flow is independent of the y-position in the tube.
3. The piston is originally at x = 0, and is infinitely thin, contrary to what Figure 1-1

shows.
4. The fluid is present only on the right side of the piston, that is, for x > 0.
5. The fluid is compressible, inviscid, and isentropic, in other words, an ideal gas.
6. No external forces act on the fluid.

In Section 2, we derive the governing equations from the Navier–Stokes equations of
fluid motion. In Section 3, we propose a linear-wave solution and a simple-wave solution
to the governing equations of Section 2. In Sections 4 and 5, we find the solution for
a piston that only recedes or only advances, respectively. Furthermore, in Section 4,
we derive a condition on the velocity of the piston that guarantees the validity of the
simple-wave solution. Finally, in Section 6, we derive the complete solution for the
specific problem of a piston that advances into the fluid then recedes from it. Sections
3–5 are based on results from Whitham’s book [4, pp. 161–181], Coulson and Jeffrey’s
book [2, pp. 202–207], and from Landau and Lifshitz’s book [3, pp. 310–398].

2. The Equations of Gas Dynamics. In this section, we derive the governing equa-
tions for the problem, often called the equations of gas dynamics. We proceed by
simplifying the Navier–Stokes equations using the assumptions made in the introduc-
tion.

Consider a compressible fluid with velocity field u = (ux, uy, uz), density ρ(x, y, z, t),
pressure P (x, y, z, t), external force field F = (Fx, Fy , Fz) and viscosity µ, given in a
consistent set of units. For this fluid, the dimensional Navier–Stokes equations are

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇P + µ∇2u + F,

∂ρ

∂t
= −∇ · (ρu).

Due to Assumption 2 of Section 1, the velocity field is of the form u = (u(x, t), 0, 0),
and the density is of the form ρ = ρ(x, t). Due to Assumption 5, the viscosity vanishes:
µ = 0. Due to Assumption 7, the external force field vanishes: F = 0. Hence, the
Navier–Stokes equations reduce to

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
= 0,

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0.

(2-1)

We have derived two governing equations in three unknowns. To obtain two equa-
tions in two unknowns, we must have a constituent relation between two of the three
variables. By Assumption 5 of Section 1, the fluid is ideal. It is known that the entropy
of an ideal gas is constant, hence a relation exists between the pressure and the density.
In the literature, see [4, p. 168] for example, the relation is known as the isentropic gas

relation, and takes the form

P = P0

(
ρ

ρ0

)γ

for some real number γ > 0. When the gas is not ideal, we need a third equation,
stating the conservation of energy. However, we do not deal with this case.
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The isentropic relation is a power law; so the pressure and density must be nondi-
mensionalized in order for the relation to be dimensionally correct. Hence we introduce
P0 and ρ0, which are the initial pressure and initial density respectively, in order to
nondimensionalize the variables.

For simplicity, we introduce the notation K =
√

γP0/ργ
0 . Then the isentropic rela-

tion implies
∂P

∂x
= K2ργ−1 ∂ρ

∂x
.

Substituting the preceeding relation into Equations (2-1), the equations of gas dynamics
for an isentropic gas become

ut + uux +
a2(ρ)

ρ
ρx = 0,

ρt + uρx + ρux = 0

(2-2)

where a(ρ) = Kρ(γ−1)/2 and the subscripts denote partial derivatives.
In general, the system of PDEs (2-2) cannot be solved analytically; so simplifying

assumptions need to be made. In the following section, we first consider the case of
linear waves as solutions and then the case of simple waves.

3. Linear-Wave and Simple-Wave Solutions. We begin this section by deriving
the governing Equation (3-5) for linear waves from Equations (2-2). Our approach
loosely follows the derivation given in Yuan’s book [5, pp. 411–415].

To derive the linear-wave solution, we assume the density is perturbed slightly from
its initial value of ρ0 by a disturbance σ(x, t); that is,

ρ(x, t) = ρ0 · (1 + σ(x, t)). (3-1)

Physically, this situation corresponds to the piston’s moving into the fluid very slowly
and over a very short distance, then stopping. For a small perturbation σ(x, t), we make
the approximation

a2(ρ)

ρ
≈

a2(ρ0)

ρ0
. (3-2)

Differentiating (3-1), then substituting the result and (3-2) into (2-2), we get

ut + uux +
a2(ρ0)

ρ0
ρ0σx = 0,

ρ0σt + uρ0σx + ρ0(1 + σ)ux = 0.

Since we are seeking a linear solution, we now linearize these equations by dropping
all nonlinear terms and rearranging. We get

ut = −a2(ρ0)σx, (3-3)

ux = −σt. (3-4)

By applying ∂
∂x to Equation (3-3) and ∂

∂t to Equation (3-4), we obtain two expressions
for the mixed second partial derivatives of u. Assuming these derivatives exist and are
continuous, which must be true for a small perturbation, the two expressions must be
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equal. Hence the propagation of a small perturbation σ(x, t) in the gas is described by
the governing equation

σtt = a2
0σxx (3-5)

where a0 = a(ρ0).
The general solution to Equation (3-5) is of the form

σ(x, t) = F (x − a0t) + G(x + a0t),

namely, two wave forms traveling in opposite directions with velocity a0 = Kρ
(γ−1)/2
0 ;

see [1, p. 142] for a derivation. The functions F and G are determined by the initial
conditions and the boundary conditions. Thus we have obtained the complete solution
of the problem in terms of linear waves. The existence of the linear-wave solution implies
that the shock-tube problem is well defined.

Let us turn to several important concepts exemplified in the linear-wave solution.
The collection the lines ξ = x ± a0t for all ξ ∈ R are called the characteristic curves,
or characteristics, of the equation. Clearly, the initial wave forms F and G propagate
along the characteristics. Moreover, by writing the equations of gas dynamics in the
form of Equation (2-2), we anticipated the importance of the function a(ρ). It gives the
speed of sound in the fluid as a function of the density.

Consider a perturbation σ(x, t) traveling with speed a0. The perturbation can reach
only points within its area of influence: |x| < a0t. Hence, at the interface |x| = a0t, the
density changes from ρ ·(1+σ(x, t)) to 0. In general, σ(x, t) is not 0 at the interface, and
therefore a shock wave, or discontinuity in ρ and u, forms for any initial conditions on
σ(x, t). However, as we show in Section 5, a shock does not always form; thus the linear-
wave solution is a poor approximation. So let us consider the simple-wave solutions to
Equations (2-2).

Using the simple-wave formulation from Coulson and Jeffrey’s book [2, p. 200], we
take into account the nonlinear terms in the governing equations. To find the simple-
wave solutions, we must find the Riemann invariants of the system. Whitham, in his
book [4, pp. 167–170], derives the invariants using the extra assumption ρ = ρ(u); how-
ever, we do not make this assumption. Following [2, pp. 195–200], we derive the invari-
ant by decoupling the equations of gas dynamics. The decoupling approach, achieved
through diagonalization, is both more general and more elegant.

Let us express Equations (2-2) as a matrix equation Qt + BQx = 0 where the
subscripts denote partial derivatives. Then the matrix equation is as follows:

(
u
ρ

)

t

+

(
u a2(ρ)

ρ

ρ u

)(
u
ρ

)

x

= 0. (3-6)

To decouple the system, we must diagonalize B as B = PΛP−1 where Λ is a diago-
nal matrix of the eigenvalues of B and where P is the matrix whose columns are the
corresponding eigenvectors.

The eigenvalues λ1 and λ2 of B are the roots of the characteristic polynomial:

λ1, λ2 = u ± a(ρ).

The corresponding eigenvectors are

v1 =

(
a(ρ)
ρ

)
and v2 =

(
−a(ρ)

ρ

)
,
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and we can construct P from them.
Rewriting Equation (3-6) with the diagonalized matrix, we obtain

(
u
ρ

)

t

+

(
a(ρ) −a(ρ)
ρ ρ

)(
u + a(ρ) 0

0 u − a(ρ)

)(
a(ρ) −a(ρ)
ρ ρ

)−1(
u
ρ

)

x

= 0.

Let us multiply both sides of the preceding equation by (1/ρ) · P−1; we obtain




1 a(ρ)

ρ

−1 a(ρ)
ρ




(

u
ρ

)

t

+

(
u + a(ρ) 0

0 u − a(ρ)

)


1 a(ρ)

ρ

−1 a(ρ)
ρ




(

u
ρ

)

x

= 0.

Recalling that a(ρ) = Kρ(γ−1)/2, we can rewrite the last equation as follows by
carrying out the matrix multiplications:

(
u + 2K

γ−1ρ(γ−1)/2

−u + 2K
γ−1ρ(γ−1)/2

)

t

+

(
u + a(ρ) 0

0 u − a(ρ)

)( u + 2K
γ−1ρ(γ−1)/2

−u + 2K
γ−1ρ(γ−1)/2

)

x

= 0.

In turn, we can rewrite the last equation as

(
−u − 2

γ−1a(ρ)

−u + 2
γ−1a(ρ)

)

t

+

(
u + a(ρ) 0

0 u − a(ρ)

)(−u − 2
γ−1a(ρ)

−u + 2
γ−1a(ρ)

)

x

= 0. (3-7)

Thus we arrive at a modified matrix equation Q̃t +f(Q̃)x = 0. Equation (3-7) is known
in the literature as the conservation form of Equations (2-2).

Let us introduce the following change of variables:

v = −u −
2

γ − 1
a(ρ) and w = −u +

2

γ − 1
a(ρ). (3-8)

Then Equation (3-7) becomes

(
v
w

)

t

+

(
u + a(ρ) 0

0 u − a(ρ)

)(
v
w

)

x

= 0. (3-9)

The transformed variables v and w in Equation (3-9) are called the Riemann invari-

ants of the system. We can now apply the method of characteristics, described in detail
by [4, pp. 113–142] and [2, pp. 184–191], to each PDE in Equation (3-9).

As in the linear-wave case, we know that the Riemann invariants travel along the
characteristics with wave velocity given by the coefficient of the space derivative term
in Equation (3-9). However, there are nonlinear contributions now, and the density
waves and velocity waves cannot be directly determined by the initial conditions and
the boundary conditions. In other words, by the method of characteristics, we know that
the quantity v is invariant along characteristics with slope u + a(ρ), and the quantity
w is invariant along characteristic with slope u − a(ρ); then, from the values of the
invariants on these curves, we can find the density waves and the velocity waves.

We can now derive the solutions of Equations (2-2) along the characteristic curves
by making the simple-wave assumption that the Riemann invariants are constant for
all space and time. Let us label Γ+ the set of characteristics on which v propagates,
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and label Γ− the set on which w propagates. Then v and w are constant on Γ+ and
Γ− respectively. Hence, we must solve for the set Γ±. From Equations (3-9), the
characteristics Γ± are the solutions to

dx

dt
= u ± a(ρ) (3-10)

with initial condition x(0) = ξ where ξ is the index for the characteristics. Hence, by
computing v and w on

Γ± :=
{
x(t) =

(
u ± a(ρ)

)
t + ξ

∣∣ ξ ∈ R
}
,

we can obtain the complete solution to Equations (2-2).

4. A Receding Piston. In this section, we consider the waves generated by the mo-
tion of a receding piston. Let us consider the case in which the piston in Figure 1-1
moves to the left with velocity Up(t) = X ′

p(t). Furthermore, let us assume that Xp(t) is
a “well-behaved” function; in other words, Xp(t) is monotonically decreasing and nega-
tive for all times t ≥ 0. Let us also assume Xp(0) = 0; in other words, the piston starts
at the origin. Furthermore, we need only consider the right-moving characteristics Γ+

since no information propagates from the fluid at rest towards the piston.
The initial-boundary-value problem is Equation (2-2) with the following two initial

conditions and one boundary condition:

ρ(x, 0) = ρ0,

u(x, 0) = 0,

u(Xp(t), t) = X ′

p(t).

(4-1)

Equation (3-9) implies that v is constant on Γ+. Hence, using the initial conditions, we
obtain from Equation (3-8) that

v(x, 0) = −u(x, 0) −
2

γ − 1
a(ρ(x, 0)) = 0 −

2

γ − 1
a0.

Because v is constant, we know that v(x, t) − v(x, 0) = 0, and hence

u −
2

γ − 1

(
a(ρ) − a0

)
= 0 (4-2)

on the Γ+ characteristics.
To find the density and velocity from the Riemann invariant, we must find the Γ+

characteristic curves. Let us denote the unknown density near the piston by ρpiston.
Then, by integrating Equation (3-10), we find that

x(τ) =
(
Xp(t) + a(ρpiston)

)
(t − τ) + Xp(τ)

are the characteristics near the piston. Notice that these characteristics are indexed by
a time variable τ rather than a spatial variable ξ. The time index τ arises from the
boundary condition; that is, we solve Equation (3-10) subject to x(τ) = Xp(τ), not
x(0) = ξ.
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Using Equation (4-2) to solve for a(ρpiston), we obtain

x(τ) =
(
X ′

p(τ) +
γ − 1

2
X ′

p(τ) + a0

)
(t − τ) + Xp(τ).

Thus u(x, t) = X ′
p(t) and ρ(x, t) = ρpiston(x, t) along the characteristics:

x(τ) =
(γ + 1

2
X ′

p(τ) + a0

)
(t − τ) + Xp(τ). (4-3)

In addition, let us solve for the first characteristic that leaves the piston, since we
need this result later. The first characteristic leaves at τ = 0. By assumption, Xp(0) = 0;
hence,

xfirst(t) =
(
a0 +

γ + 1

2
X ′

p(0)
)
t. (4-4)

Let us consider the boundary condition at the piston. Then, Equations (4-1) imply
that the invariant in Equation (4-2) is

X ′

p(τ) −
2

γ − 1

(
a(ρ) − a0

)
= 0, or a(ρ) = a0 +

γ − 1

2
X ′

p(τ).

We know that a(ρ) = Kρ(γ−1)/2. Therefore, we have an implicit equation for the density
ρ(x, t) near the piston. We can solve this implicit equation, and get

ρpiston(x, t) =
(a0

K
+

γ − 1

2K
X ′

p(τ)
)2/(γ−1)

(4-5)

where τ(x, t) is implicitly determined by Equation (4-3).
We proceed to the region of space-time not yet affected by the piston. There the

density ρ(x, t) is ρ0 and the velocity u(x, t) is 0, as given by the initial condition. Thus
the characteristic curves are

x = a0t + x0 (4-6)

for any x0 ≥ 0.
We do not yet have the complete space-time distribution of velocity and density,

because there are characteristics not yet considered. Note that dxfirst/dt > a0t; hence,
in the region where xfirst(t) ≤ x(t) ≤ a0t, the velocity and density profiles have not
been described. Obviously these characteristics x(t) all have a x0 = 0. Therefore, in
this region where xfirst(t) ≤ x ≤ a0t, the characteristics form a “fan,” because they all
start at the origin, but have different slope.

From Equation (3-10), we obtain that the characteristics in this region are

x

t
= ufan(x, t) + a(ρfan(x, t)). (4-7)

Using Equation (4-2), we find that

ufan(x, t) =
2

γ − 1

(
a(ρfan(x, t)) − a0). (4-8)

We can combine Equations (4-7) and (4-8) to obtain

ufan(x, t) =
2

γ + 1

(x

t
− a0

)
, (4-9)

ρfan(x, t) =
( 2

K(γ + 1)

(
(γ − 1)

x

2t
+ a0

))2/(γ−1)

. (4-10)
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Thus we have obtained the complete solution to the problem for all x ∈ R and all
t ≥ 0. We can summarize all of the preceding results as follows:

u(x, t) =





0, x > a0t,

ufan(x, t), xfirst(t) ≤ x ≤ a0t,

X ′
p(τ), x < xfirst(t);

ρ(x, t) =





ρ0, x > a0t,

ρfan(x, t), xfirst(t) ≤ x ≤ a0t,

ρpiston(x, t), x < xfirst(t).

Figure 4-1 shows the space-time diagram for the complete solution above, including
some of the characteristics along which the invariants travel.

Figure 4-1. Space-time diagram for the receding piston.

Since we have made many assumptions, it is important to check the validity of the
solution. In Equation (4-5), we made an implicit assumption that

a0

K
+

γ − 1

2K
X ′

p(τ) ≥ 0;

otherwise, the 2/(γ − 1)th power of the expression is not always real. Note that τ = t
on the path of the piston, so that

0 ≥ X ′

p(t) ≥
−2a0

γ − 1
for all t ≥ 0. (4-11)

Thus the simple-wave solution exists, and is valid only for those Xp(t) that satisfy the
above inequality.

We have obtained the complete solution and the condition for its validity. Let us
next consider the more interesting problem of an advancing piston.

5. An Advancing Piston. In this section, we consider the waves generated by the
motion of an advancing piston. Once again, we assume Up(t) = X ′

p(t) for some “well-
behaved” Xp(t); that is, Xp(t) is positive and monotonically increasing for all times
t ≥ 0. Furthermore, we assume the piston is initially at the origin; that is, Xp(0) = 0.
We appeal to the argument that no information travels toward the piston from the
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undisturbed area, and thus we consider only the Γ+ characteristics. The boundary and
initial conditions on this problem are the same as the ones given by Equation (4-1),
except with a different Xp(t) as we just assumed.

It is not hard to see that, where there were “fanlike” characteristics before, there
are crossing characteristics now. Such crossings pose a serious problem since they result
in a double-valued velocity and density, which is obviously unphysical. The problem
can be resolved by introducing shocks. Shocks replace the crossing characteristics by
introducing a jump discontinuity in the solution at the intersection of the characteristics.
In other words, the solution is computed along one set of characteristics, up to the
intersection of the two sets; then, the solution “jumps” to the values computed along the
other set of characteristics. Then, clearly, the simple-wave solution holds on both sides
of the shock. Furthermore, we must assume shocks are weak in magnitude, a reasonable
assumption because Xp(t) is well behaved. If the shocks are strong in magnitude, then
the isentropic assumption breaks down; see [4, pp. 171–177] or [3, pp. 392–396].

A shock forms in the receding case after the expansion fan collapses beyond zero
width into an inverted fan. In other words, the shock forms when the characteristics
emanating from the piston intersect the characteristics emanating from the undisturbed
area. Hence, the shock forms when xfirst(t) = a0t. Using Equations (4-4) and (4-6), we
conclude that the condition for shock formation is

a0 +
γ + 1

2
X ′

p(0) ≥ a0, or X ′

p(0) ≥ 0. (5-1)

Consequently, a shock always forms if the piston is advancing into the gas. Notice that
Equation (5-1) does not tell us when the first shock occurs, only that it does occur;
Landau and Lifshitz [3, pp. 369–370] give the details on when the first shock occurs.

For weak shocks — that is, when the jump in u and ρ is small — the simple-wave
solution can be “patched,” so that it is still valid. As in the expansion-fan case, in fact,
there are multiple parts to the solution; there are, in fact, two parts: one in the region
ahead of the shock and one in the region behind the shock.

Whitham [4, p. 179] gives the proper Rankine–Hugoniot condition for the velocity
of the discontinuity:

dxs

dt
=

1

2
(cbehind + cahead) = a0 +

γ + 1

4
X ′

p(τ) (5-2)

where dxs/dt is the shock velocity, c = u+a, and τ is a parameter implicitly determined
by the equation. The latter implies that the propagation velocity of the shock is the
average of the velocities of the Riemann invariants on either side of it; this condition
is intuitive, especially since the Riemann invariants are constant in the simple-wave
solution. Therefore, the position of the shock xs is given by

xs(τ) = Xp(τ) +
(
a0 +

γ + 1

2
X ′

p(τ)
)
(t − τ). (5-3)

We can solve for xs(t) by eliminating the parameter τ from Equation (5-3) and the
boundary condition at the piston. Notice that Equation (5-3) is the same as Equation
(4-3); they must be equal, because the shock appears at the interface where the char-
acteristics emerging from the piston intersect the characteristics from the undisturbed
area.
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Hence the complete solution to the advancing piston problem is

u(x, t) =

{
0, x ≥ xs(t),

X ′
p(τ), x < xs(t);

ρ(x, t) =

{
ρ0, x ≥ xs(t),

ρpiston(x, t), x < xs(t).

Figure 5-1 shows the space-time diagram for this solution, including some of the char-
acteristics along which the invariants travel, and the position of the shock wave. Note
that, in general, xs(t) 6= a0t, contrary to the figure.

Figure 5-1. Space-time diagram for the advancing piston.

6. An Oscillating Piston. In this section, we consider an initial-value problem that
exhibits both diverging characteristics and crossing characteristics, while remaining solv-
able analytically. Unlike the general discussions in the previous sections, we consider a
piston with a constant speed α.

The piston moves into the fluid with constant speed α until t = η, then recedes with
constant speed α. Hence the position of the piston is

Xp(t) =

{
αt, t ≤ η;

α(2η − t), t > η.
(6-1)

As before, we can state the initial and boundary conditions as follows:

u(x, 0) = 0,

ρ(x, 0) = ρ0,

u(Xp(t), t) = X ′

p(t).

(6-2)

We seek the solution for all times 0 ≤ t ≤ 2η and the half-space 0 ≤ x < ∞. So we
solve the problem for t < η first and then for t > η, putting the two solutions together
at the end to obtain the complete solution for all t.

For t < η, the piston is advancing. Therefore, we must find the position of the shock
wave. So Equation (5-2) becomes

dxs

dt
= a0 +

γ + 1

4
α,
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and since the shock starts at the origin, we have

xs(t) =
(
a0 +

γ + 1

4
α
)
t.

So ahead of the shock where x ≥ xs(t), we have ρ = ρ0 and u = 0; however, behind the
shock, we have ρ = ρpiston(x, t) as in Equation (4-5), and u = α.

At t = η, the piston starts moving backwards with constant speed α. Thus as we
already saw in the case of a receding piston, an expansion fan is created. Thus the
solution for t > η and x > αη is ρ = ρfan(x − αη, t − η) and u = ufan(x − αη, t − η) as
given by Equations (4-9) and (4-10). Finally, in the region where x < αη and t > η, we
have ρ = ρpiston(x − αη, t − η) and u = −α.

Figure 6-1 shows the space-time diagram of the solution. The figure suggests that,
in general, the fan characteristics could eventually intersect the characteristics from
the undisturbed area. However, this phenomenon does not occur for the simple-wave
solution.

Figure 6-1. Space-time diagram of the advancing then receding oscillation.

To show analytically that these characteristics never intersect, we seek the intersec-
tion of the front edge of the shifted expansion fan with the last characteristic of initial
density. Thus

x − αη = a0(t − η) and x = a0t, or α = a0.

Therefore, the characteristics intersect only if the piston velocity is equal to the speed
of sound. But this velocity exceeds the maximum velocity for which the simple-wave
solution is valid as given by the inequality of Equation (4-11). Hence the intersection
does not occur.

However, the fan can meet the shock at some time t∗ ≥ η. Equating the characteristic
of the leading edge of the fan with the shock position, we have

x − αη = a0(t
∗ − η) and x =

(
a0 +

γ + 1

4
α
)
t∗, or t∗ = 4

a0 − α

γ + 1
η;

therefore, α < a0 since t ≥ 0. However, we are solving only during one oscillation: that
is 0 ≤ t ≤ 2η. Thus we need to find the second shock only when

4
a0 − α

γ + 1
≤ 2, or α ≥ a0 −

γ + 1

2
.
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If we assume α is such that the second shock does not form, then we have obtained the
complete solution. Otherwise, the position of the second shock x̃s(t) can be determined
from the following ODE:

dx̃s

dt
=

1

γ + 1

(x − αη

t − η
− a0

)
+

a0

2

with initial condition x̃s(t
∗) = xs(t

∗). Behind the second shock x > x̃s(t), we have the
fan as before, and ahead of the second shock x < x̃s(t), we have the undisturbed region.
Thus we have obtained the complete solution to the problem.

The symmetric problem of a piston receding then advancing can be solved in the
same manner. However, the expansion fan is created first, then it is compressed. A
piecewise shock wave forms. We do not go into the details of this case.
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