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1. Introduction

Let us denote the normal distribution function as N(s) =
∫ s
0 e−x2

dx.
Evaluating N(s) arises often in the study of probability and statistics, since
the area under the normal curve represents the probability of a certain event
occurring. In this paper we will attempt to integrate e−x2

. However the
integral cannot be evaluated by traditional means (i.e. the fundamental
theorem of calculus) because an analytical expression for the anti-derivative
of e−x2

does not exist. Thus we will endeavor to find a different way of
approaching the problem. Eventually a method for finding the value of N
for all s will be proposed.

2. Solution to the Problem

In order to evaluate N(s) we will first evaluate N2(s) and then simply
take the square root to find the desired values.

2.1. Solution on an Infinite Interval. Before attempting to evaluate the
normal distribution for all s, let us first consider the case when we are finding
out all the area under the curve, i.e. N(∞). Thus let us consider N2(∞),

N2(∞) =
(∫ ∞

0
e−x2

dx

)2

=
∫ ∞

0
e−x2

dx

∫ ∞

0
e−x2

dx.

Since the two integrals are independent of each other, we can change the
integrating variable of the second integral from x to, say, y, thus

N2(∞) =
∫ ∞

0
e−x2

dx

∫ ∞

0
e−y2

dy.

The limits of integration do not depend on x or y, thus we can combine
the product of the two integrals into a single double integral since the area
of integration will not change. Consequently,

(1) N2(∞) =
∫ ∞

0

∫ ∞

0
e−x2

e−y2
dxdy =

∫∫
R

e−(x2+y2)dA,

where R = {(x, y) | x, y ≥ 0} and dA=dxdy.
Although it is not obvious, a change to polar coordinates at this point

will let us evaluate the integral very easily using the fundamental theorem
of calculus. By way of the following theorem (see p.853, [2])∫∫

S
f(x, y)dA =

∫ β

α

∫ b

a
f(rcosθ, rsinθ)rdrdθ,

1
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we change (1) from rectangular to polar coordinates. Hence,

(2) N2(∞) =
∫∫

D
re−r2

dA,

where D = {(r, θ) | r ≥ 0, 0 ≤ θ ≤ π
2 } and dA=drdθ. An important

note must go here: in order to achieve the same result, we must make sure
that we are integrating over the same region, or that at least we achieve
the same result when integrating over a different region. In general R 6= D,
but since limx→∞ e−x2

= 0 (we are considering the case of x = ∞ at this
moment) and e−x2

is monotonous, decreasing and
(
e−x2

)
<

(
x2 + y2 = ∞

)
on (0,∞), then we will not be loosing any area when integrating over the
sector D rather than over the square R.

Substituting the limits into the integral we achieve

(3)
∫ π

2

0

∫ ∞

0
re−r2

drdθ =
∫ π

2

0
lim

a→∞

(
−1

2
e−a2

+
1
2

)
dθ =

1
2

∫ π
2

0
dθ =

π

4
.

From (3) we see that N2(∞) = π
4 , consequently N(∞) =

√
π

2 . Thus we have
found at least one exact value of N . From the results of this section we can
conclude that the area of the normal curve on (−∞,∞) is exactly

√
π.

2.2. Solution on a Finite Interval. Now we find the value of N(s) from
N2(s) for any s. Let us rewrite (1) as,

(4) N2(s) =
∫∫

Σ
e−(x2+y2)dA,

where Σ = {(x, y) | 0 ≤ x, y ≤ s} and dA=dxdy. Now let us define Ω1 =
{(x, y) | 0 ≤ r ≤ s, 0 ≤ θ ≤ π

2 } and Ω2 = {(x, y) | 0 ≤ r ≤ s
√

2, 0 ≤ θ ≤ π
2 }.

Simply put, the region Ω1 defines the circle inscribed in Σ while the region
Ω2 describes the circle circumscribed over Σ. As we discussed earlier, e−x2

is monotonous and decreasing on (0,∞) and thus (see p.306, [1])

(5)
∫∫

Ω1

<

∫∫
Σ

<

∫∫
Ω2

.

We can easily evaluate the double integrals over Ω1 and Ω2, because the
regions are polar. Using the same method as when we evaluated (1) we
transform the inequality in (5) to

π

4

(
1− e−s2

)
<

∫∫
Σ

<
π

4

(
1− e−2s2

)
,

which in turn is

(6)
√

π

2

(√
1− e−s2

)
< N(s) <

√
π

2

(√
1− e−2s2

)
.

The last inequality tells us precisely where the value of N(s) lies, however
there does not exist a way of finding the value exactly. Thus the best
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approximate that can be offered at this point is

(7) N(s) =
√

π

4

(√
1− e−s2 +

√
1− e−2s2

)
.

In other words the midpoint of the interval in (6).

3. Analysis and Conclusion

3.1. Speed of Convergence of the Proposed Method. Table 1 below
summarizes the results of three methods of integrating the normal curve.
In column one are shown the values of N accurate to nine decimal places
[3]. In the second column we present the result of integrating the McLauren
Series for e−x2

with ten terms. In the third column are the results from
using Simpson’s 1

3 Rule for numerically evaluating an integral, using 100
subdivisions. In the fourth column we have the results of the method derived
in the previous section.

x Exact McLauren Series Simpson’s Rule Method
from (7)

10.0 0.886226925 −1.31672402x1012 0.852893592 0.886226925
6.0 0.886226925 -98744195 0.866266925 0.886226925
4.0 0.886226912 -24195.970 0.872893573 0.886226901
3.0 0.886207348 -76.48332393 0.876203293 0.886199579
2.5 0.885866274 -1.05976082 0.877481543 0.885798188
2.0 0.882081391 0.861525336 0.875033411 0.882075889
1.5 0.856188394 0.856133349 0.849571416 0.859756818
1.0 0.746824133 0.746824121 0.739775095 0.764341297
0.5 0.461281006 0.461281006 0.455710617 0.486356708

Table 1

From the data in Table 1 we see that method proposed here is actually
quite accurate for large s and is quickly convergent – seven digit accuracy at
s = 4. We see that Simpson’s Rule is consistently at one digit accuracy, and
the McLauren Series diverges rapidly for moderate and large s, although it
is very accurate around s = 0.

3.2. Closing Remarks. In conclusion, we have managed to find an accu-
rate and computationally inexpensive method for evaluating N(s). In the
process we have also found one exact value of the function, and that is
N(∞). From that value we inferred that the area under the entire normal
curve is

√
π.
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