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The propagation of thermal shock waves under the Maxwell–Cattaneo hyperbolic heat conduction 
theory is considered. In particular, the thermal conductivity is allowed to dependent on the temperature, 
which makes the model nonlinear. A solution for the evolution of a discontinuity under the linearized 
version of the governing equations is found via singular surface theory. Then, the Rankine–Hugoniot 
conditions are established for the nonlinear heat conduction model. The latter two results are used to derive 
a novel approximate solution to the problem of a Heaviside pulse propagating into a half space. Finally, this 
approximate analytical expression is compared to the numerically-computed solution of the governing 
equations, and its range of validity is established. 
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1 Introduction and problem formulation 

Consider the one-dimensional flow of heat in a 
homogeneous rigid solid, occupying the positive 

€ 

x -
axis, in the absence of any external or internal heat 
sources. Then, from the conservation of internal 
energy, we know that the absolute temperature 

€ 

ϑ  and 
the heat flux   

€ 

 q = (q(x, t),0,0) are related by 

€ 

C0ϑ t + qx = 0, (1) 

where 

€ 

C0  is the  heat capacity of the solid at some  
reference temperature 

€ 

ϑR (≥ 0) . To close the system, a 
constitutive relation connecting 

€ 

q  to 

€ 

ϑ  is necessary. 
Here, we use the well-known Maxwell–Catteneo flux 
law of hyperbolic heat conduction (see, e.g., 
Refs[1,2,3] and those therein for details): 

€ 

λ0qt + q = −Kϑ x , (2) 

where 

€ 

λ0  is the thermal relaxation time at the 
reference temperature. Following Refs[1,2,3], we 
assume a weakly temperature-dependent thermal 
conductivity, namely 

€ 

K (ϑ ) = K0[1+ β (ϑ −ϑ R)], (3) 

where 

€ 

K0  is the conductivity at the reference 
temperature, and 

€ 

β << 1. In Ref.[1], it was shown that 
shock waves do not exist for 

€ 

β < 0. Therefore, we 
restrict to the case 

€ 

β > 0 because we are interested in 
studying shock propagation. 

Now, we introduce the dimensionless variables 

  

€ 

x  = x /L , 
  

€ 

t  = t(κ 0 /L
2) , 

€ 

θ = (ϑ −ϑ R) /ϑ 0, (4) 

  

€ 

q = q(L /(K0ϑ 0)) , 

where 

€ 

L  and 

€ 

ϑ 0 (>ϑ R)  are the characteristic spatial 
and thermal scales, respectively, and 

€ 

κ 0 = K0 /C0  is the 
thermal diffusivity at the reference temperature. Then, 
leaving the superscript circles understood, the system 
of governing equations, i.e., Eqs(1,2,3), can be written 
in matrix notation as 

€ 

θ

q
 

 
 
 

 
 
t

+
0 1

c0
2 (1+εθ ) 0

 

 
 

 

 
 
θ

q
 

 
 
 

 
 
x

= −
1
τ 0

0
q
 

 
 
 

 
 , (5) 

where 

€ 

τ 0 =κ 0λ0 /L
2  is the Cattaneo number (or 

dimensionless relaxation time), 

€ 

c0 = 1/ τ 0  is the 
speed of propagation of infinitesimal disturbances and 

€ 

ε = βϑ 0 . Since 

€ 

ϑ 0 > 0  and we assumed 

€ 

β > 0, it 
follows that 

€ 

ε > 0  also. Note that the system given in 
Eq.(5) is strictly hyperbolic since the eigenvalues of the 
coefficient matrix, 

€ 

µ1,2 = ±c0 1+εθ , are real and 
distinct for all 

€ 

x  and 

€ 

t  by the positivity of 

€ 

ε  and 

€ 

θ . 
At this point we are ready to formulate the initial-

boundary-value problem (IBVP) we wish to solve. We 
are interesting in studying the evolution of a pulse 
propagating into a half-space occupied by a rigid heat 
conductor at rest at the reference temperature 

€ 

ϑ =ϑR (

€ 

⇔θ = 0). To this end, we supplement Eq.(5) 
with the initial and boundary conditions: 

€ 

θ (0, t) = H (t) , 

€ 

θ (∞, t) = 0 , 

€ 

0 < t <∞ , (6) 

€ 

θ (x,0) = 0 , 

€ 

q(x,0) = 0 , 

€ 

0 < x <∞ , 

where 

€ 

H (t)  is the Heaviside unit step function. The 
first line above is just a statement of the fact that at 

€ 

t = 0+  we suddenly begin heating the conductor at the 
left endpoint 

€ 

x = 0, but the temperature remains at the 
initial value in the region far away from the boundary, 
for all time. The second line attests to the fact that the 
solid is initially in thermal equilibrium with zero 
temperature. 



Finally, a short note is in order. Since we allow 
the thermal conductivity to be non-constant and 
temperature-dependent, then it follows that the thermal 
diffusivity, 

€ 

κ = K /C0 , must be such also. Thus, we 
could equivalently state that the model herein features a 
temperature-dependent diffusivity, as done in Ref.[1]. 
 
 

2 Linear theory 

For small thermal disturbances, we may linearize 
the system given in Eq.(5) (i.e., set 

€ 

ε = 0 ) to obtain 

€ 

θ

q
 

 
 
 

 
 
t

+
0 1
c0
2 0

 

 
 

 

 
 
θ

q
 

 
 
 

 
 
x

= −
1
τ 0

0
q
 

 
 
 

 
 . (7) 

It is easily seen that, upon eliminating 

€ 

q , Eq.(7) 
reduces to the damped wave equation (DWE): 

€ 

θ tt + 1
τ 0
θ t − c0

2θxx = 0 . The propagation of 
discontinuities under Eq.(7) can be studied analytically 
using singular surface theory (see, e.g., Refs[4,5]). The 
latter affords significant theoretical insight into the 
physics of shock (see, e.g., Refs[4,6]) and acceleration 
(see, e.g., Refs[1,2,7,8]) wave phenomena in heat 
conduction and related fields. 

Now, let 

€ 

Σ(t)  be a planar wavefront across which 

€ 

θ  suffers a jump discontinuity. Such a wavefront is 
termed a singular surface. Then, we denote by 

€ 

[[F ]](t) ≡ F− (t) − F + (t)  the amplitude of the jump in 
some quantity 

€ 

F (x, t) , where 

€ 

F ± (t) = lim
x→Σ(t )±

F (x, t)  (8) 

are the limits from the regions ahead of and behind 

€ 

Σ , 
respectively. Now, assuming that 

€ 

[[θ ]](t = 0) ≠ 0  and 

€ 

Σ(0) = 0 , it can be shown (see, e.g., Refs[4,5]) that 

€ 

[[θ ]]DWE (t) = exp − t
2τ 0

 

 
 

 

 
 , (9) 

€ 

ΣDWE (t) = c0t , 

where we have used the fact that 

€ 

[[θ ]](t = 0) = 1  from 
Eq.(6). Above, the “DWE” subscript refers to the fact 
that these expressions describe the evolution of a jump 
discontinuity under the damped wave equation (DWE), 
which (as discussed above) is equivalent to Eq.(7). 

While Eq.(9) fully characterizes the propagation 
of a thermal shock under Eqs(7,6), it does not give the 
complete solution for the temperature 

€ 

θ (x, t) . This can 
be obtained using integral transform methods (see, e.g., 
Refs[4,9]). For our purposes, however, it suffices to use 
the following ad hoc approximate solution: 

€ 

θ (x, t) ≈ H 1− x
Σ(t)

 

 
 

 

 
 1−

x{1− [[θ ]](t)}
Σ(t)

 

 
 

 

 
 , (10) 

which was shown to be quite accurate for short time in 
Ref.[9]. Recall that, in this case, 

€ 

Σ  and 

€ 

[[θ ]]  are given 
in Eq.(9).  
 

 
3 Nonlinear theory 

As discussed in Refs[10,4], one cannot hope to 
obtain, in general, exact analytical expression for both 
the amplitude 

€ 

[[θ ]](t)  and location 

€ 

Σ(t)  of a shock 
wave under a quasilinear governing equation such as 
Eq.(5). In the previous section, we succeeded in doing 
so because Eq.(7) is linear, though singular surface 
theory is also applicable to broader class of semilinear 
equations (see, e.g., Ref.[6]).  

All is not lost, however. For quasilinear systems, 
it is possible to derive an equation governing the 
evolution of 

€ 

Σ(t) using the Rankine–Hugoniot 
(compatibility) conditions (see, Ref.[10] for an in-depth 
discussion).  

To this end, we note that Eq.(5) can be written as 
a (hyperbolic) system of balance laws: 

€ 

θ

q
 

 
 
 

 
 
t

+
q

c0
2 θ + 1

2 εθ
2( )

 

 
  

 

 
  
x

= −
1
τ 0

0
q
 

 
 
 

 
 .  (11) 

Then, following Ref.[10], the Rankine–Hugoniot 
conditions take the form 

€ 

[[θ ]] dΣ
dt

= [[q]], (12) 

€ 

[[q]] dΣ
dt

= [[c0
2 θ + 1

2 εθ
2( )]] , 

where 

€ 

dΣ / dt  is termed the shock speed. 
From Eq.(6), we know that 

€ 

θ + (t) = 0 

€ 

∀t ≥ 0, 
thus 

€ 

[[θ ]]≡θ− . This allows us to use the identity for 
the jump of a product (see, e.g., Refs[1,4]) to rewrite 
the right-hand side of the second line in Eq.(12) as 

€ 

c0
2[[θ ]] 1+ 1

2 ε[[θ ]]( ) . Then, by eliminating the 
unknown quantity 

€ 

[[q]] from the second line in 
Eq.(12), we obtain an equation for the shock speed in 
terms of the jump amplitude: 

€ 

dΣ dt( )2 − c02 1+ 1
2 ε[[θ ]]( ) = 0    (

€ 

[[θ ]]≠ 0 ). (13) 

Clearly, the only positive real solution of the latter is  

€ 

dΣ
dt

= c0 1+ 1
2 ε[[θ ]](t) . (14) 

For definiteness, we picked the positive root so that the 
singular surface 

€ 

Σ  is right-propagating, this is due to 
our earlier assumption that the heat conduction takes 
place along the positive 

€ 

x -axis. Also, note that if we let 

€ 

ε → 0 in Eq.(14), we recover the result from the linear 
theory (compare the result of taking this limit to the 
second line in Eq.(9)).  
 
 

4 An approximate analytic solution 

One shortcoming of the nonlinear theory is that it 
does not reveal much about the propagation of the 
shock wave beyond the relationship between the 



shock’s speed and amplitude given by Eq.(14). An 
additional equation is needed for the full analytic 
solution to be obtained, and (as noted in Ref.[1]) this is 
the topic of ongoing research. The next best thing one 
can do is find asymptotic and/or approximate analytic 
solutions (see, e.g., Ref.[11]). 

In this vein, a new approach to making this 
problem tractable was proposed in Ref.[4]. There, the 
idea is to make the approximation 

€ 

[[θ ]] ≈ [[θ ]]DWE, 
where 

€ 

[[θ ]]DWE  is given in Eq.(9). Then, one can 
integrate Eq.(14) and obtain an analytic expression for 
the wavefront location to supplement the postulated 
amplitude expression. The result is 

€ 

Σ(t) ≈ 4τ 0c0 1+ 1
2 ε − 1+ 1

2 ε exp(−t 2τ 0)
 
 
  

 
  (15) 

          

€ 

+4τ 0c0 ln
1+ 1+ 1

2 ε exp(−t 2τ 0 )

1+ 1+ 1
2 ε

 

 

 
 

 

 

 
 
+ c0t . 

Again, it is easy to check that as 

€ 

ε → 0, 

€ 

Σ(t)→ ΣDWE (t) , showing that this is a consistent 
approximation. 

The final step in constructing our approximate 
analytic solution to the IBVP given by Eqs(5,6) is to 
use the conclusion in Refs[4,6] that the ad hoc solution 
to the DWE, given above in Eq.(10), is in good 
agreement with the shape of the wave behind the 
wavefront even for the original nonlinear wave 
equation. Therefore, upon substituting the expression 
for 

€ 

Σ  from Eq.(15) and the expression for 

€ 

[[θ ]]  from 
Eq.(9) into Eq.(10), we have our approximate analytic 
solution. 
 
 

5 Comparisons with the numerical solution 

In this section, we study the range of applicability 
of the ad hoc solution proposed in the previous section. 
To this end, we solve Eq.(5) subject to the initial and 
boundary condition given in Eq.(6) using a high-
resolution shock-capturing (i.e., Godunov-type) 
numerical scheme, the details of which can be found in 
Refs[4,6]. This provides an accurate reference (exact) 
solution against which we can compare the linear and 
approximate nonlinear theories presented above. 

Note that the model, at this point, has two free 
parameters, namely 

€ 

ε  and 

€ 

τ 0. Therefore, for 
definiteness and simplicity, we henceforth take the 
dimensionless speed of propagation of infinitesimal 
disturbances to be unity, i.e., 

€ 

c0 = 1  (

€ 

⇔τ 0 = 1). In the 
comparative studies below, we vary the “nonlinearity 
parameter” 

€ 

ε  to determine the applicability of our 
approximate theory in the various regimes (i.e., small 

€ 

ε , large 

€ 

ε , etc.). 
In each of Figs.1,2, we show the three solutions 

of the IBVP under consideration at two different 
instants of time. In each plot, the gray dash-dotted line 
corresponds to the ad hoc solution of Eqs(7,6) (i.e., the 

linearized problem) given by Eqs(10,9). The dashed 
black line corresponds to the ad hoc approximate 
analytical solution of Eqs(5,6) given by Eqs(10,15) 
with the expression for 

€ 

[[θ ]]  from Eq.(9). Finally, the 
thin solid black line represents the numerical solution 
of Eqs(5,6). 

Clearly, we obtain excellent qualitative agreement 
between the ad hoc approximate nonlinear solution and 
the numerically-computed exact solution, even for 

€ 

ε, t =O(1) . On the other hand, the solution to the 
linearized equations is only appropriate for 

€ 

ε, t << 1 , 
i.e., for weak nonlinearity and short time, as one would 
expect.  

 
 

6 Conclusions and outlook 

In this paper, we presented a study of thermal 
shock waves under a nonlinear Maxwell–Cattaneo 
hyperbolic heat conduction model featuring a 
temperature-dependent conductivity. The solution to 
the linearized problem was discussed, and an 
approximation technique for the nonlinear problem was 
developed. In particular, we constructed an 
approximate analytic solution to the original 
(nonlinear) equations using the exact shock speed from 
the Rankine–Hugoniot conditions, the shock amplitude 
expression from the linear problem (i.e., the DWE) and 
a linear interpolation of the solution between the shock 
front and the domain boundary. 

We found that our approximate analytic solution 
is in very good agreement with the actual (numerically-
computed) solution to the IBVP. It appears, however, 
for longer times the amplitude of the shock waves is 
not captured as accurately as the wavefront location. 
One way to remedy this situation is to replace 

€ 

[[θ ]](t)  

Figure 1: 

€ 

ε = 0.5. 



with 

€ 

[[θ ]](t +φ)  in Eq.(10), where 

€ 

φ  is a phase shift. 
Unfortunately, the theory presented above does not 
give any insight into how to pick such a phase shift. 
Obviously, by comparing the approximate analytic and 
numerical solutions at various times, the parameter can 
be tuned by trial-and-error. More rigorous approaches 
to improving the match between the actual and ad hoc 
solutions are being investigated and will be the topic of 
future publications. 

Additionally, the observations made in Section 5 
regarding the quality of the approximate analytic 
solution agree with those made in Ref.[4], wherein the 
same approximation technique used above was 
developed for the nonlinear wave equation governing 
the transverse vibrations of a string in a resisting 
medium. This is not surprising as the latter equation 
can be re-interpreted as the governing equation of the 
problem studied in the present work (see Section 5.2 in 
Ref.[4]). Therefore, the approximation method from 
Ref.[4], which we presently applied to the study of 
thermal shocks, is both a general and extensible 
approach to bridging the theory gap between the 
exactly-solvable linearized equations and the 
(generally) theoretically-intractable fully nonlinear 
equations governing the dynamics of shock wave 
propagation. 
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