
The Crossing Number of a Graph

Ivan Christov

January 7, 2004

1 Introduction

1.1 Motivation

Imagine you were the mayor of Zarankiewiczburg, a beautiful city on the Danube. You are

faced with the following problem - you have to construct 6 bridges across the Danube that

connect 6 suburbs on both sides. Being an idealist, you want to connect each suburb on one

side of the river to all the ones on the other side of the river. You quickly realize this looks

like an impossible task (unless you build some bridges higher vertically than others, but you

do not have the engineering skills to do that). You convince yourself that the problem does

not have a solution and you promptly give up.

In fact, the above problem does not have a solution, since the graph K3,3 is not planar

as we shall discuss later. The latter problem generalized to graphs is known is a problem

of determining which graphs the planarity of the graph. In turn, the planarity problem is

closely related to the crossing number problem, which this paper will focus on.

1.2 Definitions

We first introduce the following concepts and definitions in order define the crossing number

problem.

Definition 1 A drawing of a graph, G = (V,E), is an embedding of G into R2. In other
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words, a mapping of all vertices, v ∈ V , to points in R2 and all edges, e ∈ E, to Jordan arcs

terminating at the vertices the edge connects.

A Jordan curve is homeomorphic to the unit circle, hence a Jordan arc is a piece of finite

length of a Jordan curve. We would like to use Jordan arcs as edges because smoothness

and continuity of the edges will thus be guaranteed. From this point on we shall denote a

drawing of a graph G by D(G).

Definition 2 A drawing of a graph is “good” if and only if all edges intersect at most once.

Note that the above definition requires that the intersections between two edges must occur

at a vertex or at a crossing point, in other words all edges will not necessarily cross, but will

intersect.

Definition 3 Given a good drawing D(G) of a graph G = (V,E), the crossing number

of the drawing denoted by cr(D(G)) is the number of single point crossings (non-vertex

intersections) between edges that occurs in the drawing.

A particular type of planar embedding of a graph will become important when defining

the rectilinear crossing number of a graph, hence we shall define the rectilinear drawing of a

graph now.

Definition 4 A rectilinear drawing D̄(G) of a a G is an embedding of G into R2 such that

every edge is mapped to a line in the plane connecting two vertices, which are mapped to

points in the plane. Moreover, no three vertices can be colinear.

Notice, in Definition 4 there is no need for a good drawing, since by requiring that no three

vertices are colinear, then no edges can intersect continuously or more than once. The latter

follows from elementary geometry since two lines in a plane either do not intersect at all,

intersect at exactly one point or are indeed the same line and intersect at all points.
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We can now define the crossing number of a graph (as opposed to the crossing number

of a drawing of a graph).

Definition 5 The crossing number of a graph G = (V,E) is ν(G) = min{cr(D(G))}.

Essentially the crossing number of a graph is the minimum crossing number of any of its

drawings. Furthermore we can define the rectilinear crossing number of a graph, ν̄(G), the

exact same way, except we would have to replace D with D̄.

Problem 1 (Crossing Number Problem) Given a graph G = (V,E) what is ν(G)?

1.3 Historical Background

Historically the problem is known as Turàn’s Brickyard Problem, after P. Turàn who was the

first to suggest it. During World War II Turàn’s regiment was working a brick factory where

every brick oven was connected to every storage hangar by rail. Rail carts were pushed on

the rails from the ovens to the hangars. As Turàn explains in the introductory remarks of the

first volume of the Journal of Graph Theory, the carts often derailed where different tracks

crossed. Hence it occurred to him that it would have been a good idea if the builders of the

brickyard had attempted to minimize the crossings of the rails. The latter is essentially the

problem of the crossing number of a complete bipartite graph, which we shall discuss.

In 1954 Zarankiewicz provided what he believed was a proof for the counting num-

ber of the complete bipartite graph [11]. However, in 1969 R. K. Guy found an error in

Zarankiewicz’s proof [5]. Hence Zarankiewicz’s calculation is not the exact crossing number

for the complete bipartite graphs, but it is at least an upper bound to the exact value. and

went on to conjecture the crossing number of the complete graphs. In [5], Guy initiated the

search for the crossing number of the complete graphs offering a conjecture as to what the

number might be. In 1971, Kleitman in a landmark paper, [6], proved that Zarankiewicz’s

conjecture predicts the correct values for all complete bipartite graphs K5,m, K6,m for all

positive m.
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Today Guy’s conjecture on the crossing number of the complete graphs and Zarankiewicz’s

conjecture for complete bipartite graphs have neither been proven nor disproven. However,

in 1983 Garey and Johnson proved the crossing number problem to be NP-Complete and

conjectured it is likely to be intractable [4]. Many improved upper and lower bounds have

been found for the crossing numbers of the complete and complete bipartite graphs, but no

exact solution. Furthermore the general crossing number problem has not been attempted

by any mathematician due to the complexity of it.

2 Crossing Numbers

As one can imagine in general the problem would be very hard to approach, especially if G

is a graph whose properties we don’t know. Hence some simplifications must be made in

order to approach the problem and attempt to solve it. A natural approach would be to

consider graphs such as the complete graph Kn or the complete bipartite graph Kn,m whose

structure is relatively simple.

The values of the crossing number of Kn for n ≤ 10 have been computed numerically

(and proven) to be 0, 0, 0, 0, 1, 3, 9, 18, 36, 60 respectively [9]. For n ≥ 11 an estimate can

be obtained as we shall proceed to show, but no proof exists.

2.1 Crossing Number of Complete Graphs

Problem 2 Given a complete bipartite graph Kn.m, what is ν(Kn,m)?

Proposition 1 (Zarankiewicz’s Conjecture) ν(Kn,m) = bn
2
cbn−1

2
cbm

2
cbm−1

2
c

Zarankiewicz’s reasoning behind the conjecture is as follows. Place bn
2
c of the vertices on

the positive x axis and dn
2
e on the negative x axis; similarly place bm

2
c of the vertices on

the positive and dm
2
e on the negative y axis. Connect the vertices on the x axis with those

on the y axis by drawing nm straight line edges. Hence this is a drawing on Kn,m, and the

number of crossings can be determined to be exactly as stated above [10].
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Problem 3 Given a complete graph Kn, what is ν(Kn)?

Proposition 2 (Guy’s Conjecture) ν(Kn) = 1
4
bn

2
cbn−1

2
cbn−2

2
cbn−3

2
c

The construction of this conjecture is a lot more involved and subtle that Zarankiewicz’s.

To summarize it, the vertices of Kn are mapped to top and bottom discs of a cylinder

isomorphic to the unit sphere. Then these vertices are connected to form two complete

graphs isomorphic to Kn/2 on the top and bottom discs. By considering the shortest helical

paths on the cylinder between the vertices on the top and bottom discs the value of for the

crossing number in Proposition 2 can be obtained.

Theorem 1 For the complete bipartite graphs K5,m and K6,m, the crossing numbers are

exactly as given by Zarankiewicz’s conjecture – ν(K5,m) = 4bm
2
cbm−1

2
c and ν(K6,m) =

6bm
2
cbm−1

2
c.

This result is due to Kleitman. See [6] for a proof of the theorem. Essentially, Kleitman

shows several smaller results that together imply Theorem 1.

2.2 Planar Graphs

The graphs with crossing number 0 have special properties and significance as we will explore

in this section.

Definition 6 A graph G = (V,E) is called planar if and only if it has crossing number

ν(G) = 0.

Some examples are the complete graphs Kn for n < 5 and the complete bipartite graphs

Kn,m for n,m < 3. Furthermore, the corresponding graphs of Platonic solids (also know as

regular polytopes) are also planar.

Theorem 2 (Kuratowski’s Theorem) A graph G = (V,E) is planar if and only if it contains

no subgraph isomorphic to a subdivision of K5 or K3,3.
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A proof can be found in Kuratowski’s orginal paper on the subject [7]. Considering K5 and

K3,3 are the two complete graphs with crossing number 1, if a subdivision of these is present

in a general graph G, then intuitively G should not have a planar drawing; indeed that is

the case.

Theorem 3 Given a planar graph G = (V,E), its rectilinear crossing number is equal to

the crossing number, that is to say ν(G) = ν̄(G) = 0.

A proof can be found in Fáry’s article [2]. Essentially, Theorem 3 states that any planar

graph has a drawing where all edges are straight lines.

2.3 Computational Complexity

Since no method to find the crossing number of a graph exists, then a different approach

would be to consider the computational problem in hopes to learn more about the original

problem. In a very terse paper in 1983 Garey and Johnson proved that the problem of

deciding if ν(G) ≤ K, for some integer K, is an NP-Complete problem [4].

The proof consists of several polynomial-time reductions of the problem. A bijection is set

from the Bipartite Crossing Number problem to the Optimal Linear Arrangement problem

and then another one from the Crossing Number problem to the Bipartite Crossing Number

problem. Since the Optimal Linear Arrangement problem has been proven NP-Complete

already, then the two problems bijected to it must be NP-Complete as well. For reference, the

Optimal Linear Arrangement problem is defined as “Given a graph G = (V,E) and an integer

K is there a one-to-one function f : V → {1, 2, . . . , |V |} such that
∑

{u,v}∈E |f(u)− f(v)| ≤

K?”
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3 Rectilinear Crossing Numbers

3.1 Relationship to the Crossing Number

Proposition 3 Given a graph G = (V,E) then ν(G) ≤ ν̄(G).

Proof: Let us consider a graph G = (V,E) and it’s minimal rectilinear crossing drawing

D̄∗(G) with corresponding rectilinear crossing number ν̄(G). Also, consider the isomorphic

minimal crossing drawing of G, D∗(G) with crossing number ν(G). Construct an isomor-

phism ψ : D̄∗(G) → D∗(G). In the construction of the isomorphism, extra crossing cannot

be induced in D∗(G), because that will clearly not yield a minimal crossing drawing (the

minimal crossing rectilinear drawing can be a minimal crossing drawing). Furthermore,

the number of crossings in D∗(G) would be same as those in D̄∗(G) if no crossings can be

eliminated. Hence we have shown that ν(G) ≤ ν̄(G).

�

In particular, a family of graphs for which strict inequality holding in the above theorem

are the complete graphs on n vertices for n ≥ 10.

3.2 Rectilinear Crossing Number of the Complete Graphs

The rectilinear crossing numbers for Kn have been proven and computed to be 0, 0, 0, 0, 1,

3, 9, 19, 36, 62 for n ≤ 10 [9]. The result for K10 was proven very recently in an impressive

paper by Brodsky et al in [1]. In general an upper bound due to Jensen exists and states

that ν̄(Kn) ≤ 7
432
n4 +O(n3). A better estimate, including a lower bound was found in 2003

by Finch, his result shows that

0.290 <
61

210
≤ lim

n→∞

ν̄(Kn)(
n
4

) ≤ 5

13
< 0.385. (1)

For the complete bipartite graphs, Zarankiewicz’s conjecture (Proposition 1) gives a good
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estimate of the rectilinear crossing number (because of the construction of the conjecture),

however it hasn’t been proven correct or incorrect for this problem either.

3.3 Computational Complexity

Unlike the general crossing number problem, the rectilinear crossing number problem has

not been proven to be an NP-Complete problem.

4 A Modified Crossing Number Problem

4.1 Embedding Graphs in R

Let us consider the following simplified crossing number problem.

Problem 4 (Linear Embedding Problem) Given a graph G = (V,E), inject all vertices,

v ∈ V , to a subset of the integers and map all the edges, e ∈ E, to Jordan arcs in the

plane with endpoints at these integer values on a line. What is the optimal placement of the

vertices such that the number of crossings between edges is minimum?

Instead of mapping the vertices to points in the plain, we will map them to point on

the the real line. The edges will still be mapped to Jordan arcs in the plane, otherwise the

problem will become very elementary. There are two versions of the problem; one if we allow

the arcs to be drawn only above the number line, and two if allow the arcs to be above and

below. Furthermore, let us refer to the linear embedding problem’s crossing number as µ(G)

(for the case when edges are allowed above and below the number line) and µ+(G) (for the

strictly above or below case) in order to distinguish it from the planar crossing number ν(G).
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4.2 Crossing Numbers of Linearly Embedded of Graphs

4.2.1 General Remarks

Proposition 4 For any give graph G = (V,E), the following relationship between its cross-

ing numbers must hold ν(G) ≤ ν̄(G) ≤ µ(G) ≤ µ+(G).

Proof: In order to prove the above inequality, we need to show that three separate inequal-

ities hold, i.e. ν(G) ≤ ν̄(G) and ν(G) ≤ µ(G) and µ(G) ≤ µ+(G). By Proposition 3 we

know ν(G) ≤ ν̄(G). Furthermore, it is cleat that µ(G) ≤ µ+(G) because by allowing edges

both above and below allows us to possibly decrease the number of crossings in the minimal

crossing drawing; also it is clear no new crossings can be added. Consider a plane embedded

graph, there are 2 degree of freedom for the placement of each vertex. However in the linear

embedding there is 1 degree of freedom. Thus there cannot be less crossings in the linear

embedding than the planar embedding. Hence we have shown the third and last inequality

ν(G) ≤ µ(G).

�

4.2.2 Complete Graphs

By elementary inductive arguments, we can easily derive the following If we restrict ourselves

to the case when the edges can only be drawn above the number line of vertices, then

µ+(K1,m) = µ+(Kn,1) = 0, and µ+(K2,m) =
∑m−1

i=1 i = (m−1)(m−2)
2

, which implies µ+(Kn,2) =

1
2
(n−1)(n−2), are obvious. Similarly, in the case where we allow vertices on above and below

the number line, µ(K1,m) = µ(Kn,1) = 0, µ(K2,m) = µ(Kn,2) = 0, and µ(K3,m) =
∑m−1

i=1 i =

(m−1)(m−2)
2

, which implies µ(Kn,3) = 1
2
(n − 1)(n − 2). However any further attempt at

computing the crossing numbers of the linear embeddings becomes quite difficult, similarly

to the plane embedding problem. No general formula is know for the linear embedding

crossing numbers of the complete or complete bipartite graphs.
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4.2.3 Outerplanar Graphs

In this section we shall explore a particular case of the problem of determining whether if a

graph G is planar, i.e. ν(G) = 0, then it is also “linear,” i.e. µ(G) = 0.

Consider the planar complete bipartite graph K2,3. Clearly K2,3 has crossing number

ν(K2,3) = 0. However, it cannot be linearly embedded such that either µ+(K2,3) = 0 or

µ(K2,3) = 0. In fact we can use the formulas discussed in the previous section to show that

µ(K2,3) = 0 and µ+(K2,3) = 1. Hence not all planar graphs have linear embedding crossing

numbers equal to zero. The following theorem shows that the outerplanar graphs (a subset

of planar graphs) are indeed remain “linear.”

Definition 7 A planar graph G = (V,E) is said to be outerplanar if there exists a drawing

in the plane, D(G), such that all vertices, v ∈ V , lie on the outer face of the graph and no

edges, e ∈ E, cross.

Without loss of generality we can assume the vertices lie on an n-gon, where n = |V |.

Theorem 4 An outerplanar graph G = (V,E) can be linearly embedded with all edges above

the diagonal such that it has linear embedding crossing number µ+(G) = 0.

Proof: We shall show an isomorphism exists that maps an outerplanar graph to a linear

embedding with 0 crossings. Given an outerplanar graph G = (V,E) we begin by construct-

ing a mapping φ : G → G′, G′ = (V ′, E ′), that maps all vertices v ∈ V to the vertices of

an n-gon, v′ ∈ V ′, where n = |V |. By Definition 7, we know φ will preserve all edges and

the planarity of G, hence our construction is an isomorphism. We continue by constructing

another map ψ : G′ → G′′, G′′ = (V ′′, E ′′), such that all v′ ∈ V ′ are mapped to integers,

v′′ ∈ V ′′, on a straight line with the property v′′0 < v′′1 < ... < v′′n−1, again n = |V ′| = |V |.

Moreover, ψ will assign all v′′i in the following manner, pick any v′0 ∈ V ′ (i.e. a vertex of

the n-gon) and map it to v′′0 ∈ V ′′, then traverse G′ either clockwise or counterclockwise

and map the vertices v′i ∈ V ′ to those in v′′i ∈ V ′′ such that the property vi < vj if i < j is
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preserved. Since all vertices of G′ lie on its outer face (i.e. they are indeed the vertices on

the circumference of the polygon) then we know every vertex is uniquely mapped to a vertex

of G′′. All edge are preserved as well. Hence ψ is an isomorphism.

Now we must show that µ+(G′′) = 0. The result is fairly intuitive. Essentially ψ “un-

wraps” the polygonal graph G′ and “straightens” out the polygon’s circumference into a line.

By Definition 7 we know no edges intersect inside the polygon. Hence when we “straighten”

the polygon out and homeomorph the line segments in it to Jordan arcs none of these arcs

will intersect if we assure their maxima occur sufficiently low in the vertical direction.

Hence given an outerplanar graph G we can find a linear embedding G′′ = ψ ◦φ(G) such

that µ+(G′′) = 0. By Proposition 4, µ(G′′) ≤ 0 but since the crossing number cannot be

negative, then it must indeed be identically zero.

�

4.2.4 Minimizing the Linear Embedding Crossing Number

Consider some graph G, we shall give an overview of a possible method which will embed

the graph onto R and minimize the number of crossings.

First consider the case that the edges can only be draw above the number line. Then

draw the graph (no particular rules are specified at this point). Find the first vertex, where

an arc (edge) begins and intersects with another edge. Select the arc beginning (ending) at

the vertex that intersect the most other edges. If switching the position of this vertex with

any other one in the graph eliminates a crossing, switch it. Continue this process for all

vertices. Several passes through the linear arrangement of vertices will likely be required. If

in a pass through the vertices no vertices are switched then the minimal crossing drawing has

been found. This procedure is essentially a parallel to the bubble sort in computer science.

The case where we allow edges to be drawn above and below the number line is a bit

different, since we have the ability to switch vertices and also reflect them about the number

line. First step now would be to attempt to distribute all the edges evenly above and bellow
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the number line, so that crossings are decreased. Hence we make passes through the vertices

reflecting edges about the number line if it reduces the crossings no vertices are reflected

in a pass. Then we can proceed by the method above and we will have a minimal crossing

drawing for the embedded graph.

Not unexpectedly, it has actually been shown that the problem of determining whether

µ(G) ≤ K, for some positive integer K and graph G, is an NP-Complete problem [8].

However the parallel problem of determining whether µ+(G) ≤ K has not been proven NP-

Complete. Hence no optimal method for minimizing the crossings exists, but the above

discussion has some merit, since it is O(n2) while checking the crossing of every possible

permutation of the vertex arrangement is O(n!).

5 Further Research and Related Problems

Recently a connection between Sylvester’s four-point theorem and the rectilinear crossing

number has been found [3]. Several generalizations of Sylvester’s theorem have been solved,

which could lead to some insight into the crossing number problems.

Further research on the linearly embedded graph is also desirable. The problem is some-

what more manageable than the planar embedding one. Attempting to deduce a closed

formula for µ(Kn), µ+(Kn), µ(Kn,m), µ+(Kn,m) should be possible with more work on the

problem.

Not surprisingly, the crossing number has applications to engineering. For example,

the crossing number can be used to estimate the chip area required for Very Large Scale

Integration (VLSI) circuits. Also, Leighton and others proved in the early 1980s that the

chip area required for the realization of an electrical network is closely related to the crossing

number of the underlying graph. Optimizing numerical algorithms used to determine the

crossing number, even though the problem is NP-Complete, would be of great benefit to

such applications of the problem.
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