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Introduction

Preliminaries:

• Consider a long and shallow microchannel (blue area in Fig. 1) such that h0 ≪ w ≪ l .

• The microchannel is embedded in a soft material (e.g., PDMS); the bottom is rigid.

•Only top wall deformation is considered because h0 ≪ w ⇒ the deformation of side walls is negligible.

Figure 1: Schematic diagram of a compliant microchannel embedded in PDMS. The origin of
the coordinate system is the undeformed fluid–solid interface, initially h0 above the rigid bottom.

Lubrication approximation for flow in shallow channels

• For a long and shallow microchannel, to the leading order in the perturbation parameters ǫ := h0/l
and δ := h0/w (ǫ ≪ δ ≪ 1), the incompressible Navier–Stokes equations reduce to
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• The leading order solution (the lubrication approximation) is axial flow (vy ≃ vx ≃ 0):
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But, dp/dz 6= const. due to the axially varying deformation u0y(x , z) of the fluid–solid interface.

Shape of the fluid–solid interface: Thin structures

• Assumptions:

1. The deformation is small enough so that we can use isotropic linear elasticity.

2. Since w , t ≪ l , the deformation of each flow-wise cross-section is decoupled as ǫ → 0 [CCSS18].

3. The wall’s maximum displacement is small, and the structure is thin: umax ≪ t ∼ h0 ≪ w .

• Using first-order shear-deformation plate theory with clamped BCs [SC18], the displacement is
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where EY = EY /(1− ν2) is a scaled Young’s modulus EY , and ν is the Poisson ratio.
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Figure 2: Dimensionless ratio of u0y and p from (2) showing collapse across flow rates. Symbols
from ANSYS fluid–structure interaction simulations [SC18] matched to experiments from [OYE13].
Thin-plate theory corresponds to t/w → 0 in {·} in (2). (a) t/w ≃ 0.12, (b) t/w ≃ 0.35.

Shape of the fluid–solid interface: Thick structures

• Assumptions:

1. The deformation is small enough so that we can use isotropic linear elasticity.

2. Since w ≪ l and t ≪ l , the top wall is in a plane strain configuration.

3. At the side walls, σxx ∼ ph0/t and t ∼ w ≫ h0 (thick structure) ⇒ use a simply supported
boundary condition in each cross-section: σxx |x=±w/2 = 0.

• Using an Airy stress function for a simply supported rectangle, subject to the BCs σyy |y=0 = −p(z)
and σxy |y=0 = σyy |y=t = σxy |y=t = 0, we obtain the displacement as a Fourier series [WC19]:
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Figure 3: Dimensionless deformed fluid–solid interface, H(X ,Z ) = u0y(x/w , z/l)/h0, from equa-
tion (3) with p(z) having been obtained from (4); from [WC19].

The flow rate–pressure drop relation

• The volumetric flow rate across the deformed cross-section is defined as
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• In steady flow with q = const. controlled, set outlet to gauge p(l) = 0, use u0y (x , z) derived to obtain
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• Flow rate–pressure drop relation (4) (no free parameters) agrees well with experiments & simulations.
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Figure 4: Comparison between the thin-structure theory (4) with (2) (solid), Poiseuille’s law
(dashed), and two sets of simulations (×) [SC18] tuned to experiments (•) [OYE13].
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Figure 5: Comparison between the thick-structure theory (4) with (3) (curves) and four ex-
periments (symbols) from [GEGJ06].

•We have also studied non-Newtonian fluids [ADJC19]; ideas carry over but can’t solve ODE for p(z).

In summary: We constructed predictive models of pressure drops in compliant rectangular conduits
under different deformation regimes. In doing so, we rationalized previous experiments.

⇒ Nonlinear (flow-responsive) resistive elements within the hydraulic circuit analogy!

Rigorously generalized Poiseuille’s law, i.e., ∆p = 12µlq
h30w

[1 + F(∆p/E ,w/h0, t/w , ...)].
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