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Introduction

Preliminaries:

e Consider a long and shallow microchannel (blue area in F'1G. 1) such that hy < w < /.
e The microchannel is embedded in a soft material (e.g., PDMS); the bottom is rigid.

e Only top wall deformation is considered because hy < w = the deformation of side walls is negligible.

FIGURE 1: Schematic diagram of a compliant microchannel embedded in PDMS. The origin of
the coordinate system is the undeformed fluid—solid interface, initially hg above the rigid bottom.

e For a long and shallow microchannel, to the leading order in the perturbation parameters € := hgy//
and 0 := hy/w (e < § < 1), the incompressible Navier—Stokes equations reduce to
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e The leading order solution (the lubrication approximation) is axial flow (v, >~ vyx >~ 0):

vi(x,y.2) = =2y + ho) [y — (. 2)]  (—ho<y <) (1)

But, dp/dz # const. due to the axially varying deformation UB(X, z) of the fluid—solid interface.

e Assumptions:

1. The deformation is small enough so that we can use isotropic linear elasticity.
2. Since w, t < [, the deformation of each flow-wise cross-section is decoupled as ¢ — 0 [CCSS18|.

3. The wall's maximum displacement is small, and the structure is thin: umax < t ~ hy < w.

e Using first-order shear-deformation plate theory with clamped BCs [SC18], the displacement is
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where Ey = Ey /(1 — v?) is a scaled Young's modulus Ey, and v is the Poisson ratio.
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FIGURE 2: Dimensionless ratio of u}(} and p from ([2) showing collapse across flow rates. Symbols

from ANSYS fluid—structure interaction simulations [SC18] matched to experiments from [OYE13].
Thin-plate theory corresponds to t/w — 0in {-} in (2). (a) t/w ~ 0.12, (b) t/w ~ 0.35.

Shape of the fluid—solid interface: Thick structures

e Assumptions:
1. The deformation is small enough so that we can use isotropic linear elasticity.
2.Since w < [ and t < [, the top wall is in a plane strain configuration.
3. At the side walls, oxx ~ phg/t and t ~ w > hg (thick structure) = use a simply supported

boundary condition in each cross-section: UXX]X:iW/Q = 0.

e Using an Airy stress function for a simply supported rectangle, subject to the BCs oy |,—q = —p(2)
and oxy|,—0 = Oyy|y=t = Oxy|y=t = 0, we obtain the displacement as a Fourier series [WC19]:
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FIGURE 3: Dimensionless deformed fluid—solid interface, H(X, Z) = u)g(x/w, z/1)/hg, from equa-
tion (3) with p(z) having been obtained from (4)); from [WC19].

The flow rate—pressure drop relation

e [ he volumetric flow rate across the deformed cross-section is defined as

+w/2 ruy(x,2) using () 1 dp +w/2
0 3
q = / vo(x,y,z)dydx =" —— ho + uy(x, z)| ™ dx.
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e In steady flow with g = const. controlled, set outlet to gauge p(/) = 0, use u}(}(x, z) derived to obtain
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where S = %fjll//; &dX, 5 = fjll//zz &2dX, S3 = %fjll//zz &3 dX are evaluated from (2) or (3).
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e Flow rate—pressure drop relation (4) (no free parameters) agrees well with experiments & simulations.
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FIGURE 4: Comparison between the thin-structure theory (4) with (2)) (solid), Poiseuille’s law
(dashed), and two sets of simulations (x) [SC18] tuned to experiments (o) [OYE13].
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FIGURE 5: Comparison between the thick-structure theory (4)) with (3) (curves) and four ex-
periments (symbols) from [GEGJO06].

e We have also studied non-Newtonian fluids [ADJC19]; ideas carry over but can't solve ODE for p(z).

In summary: We constructed predictive models of pressure drops in compliant rectangular conduits
under different deformation regimes. In doing so, we rationalized previous experiments.

= Nonlinear (flow-responsive) resistive elements within the hydraulic circuit analogy!
Rigorously generalized Poiseuille’s law, i.e., Ap = 22149 1+ F(Ap/E, w/hy, t/w,...)].
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