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The Big Picture

Motivation:

How should we design “genuinely multidimensional” limiters on
unstructured grids?
Need for a simple & fast predictor algorithm for the time-dependent
extension of L1-minimization FEM (Guermond & B. Popov).

Background:

High-resolution central schemes: Nessyahu & Tadmor (1992), Jiang &
Tadmor (1998), Kurganov & Tadmor (2000), ...
Extension to unstructured grids: Arminjon et al. (1997).
Semi-discere central-upwind version: Kurganov & Petrova (2005).

Outline of the talk:
1 Hyperbolic systems of conservation laws and 2D central schemes.
2 The minimum-angle-plane reconstruction.
3 Construction of the staggered grid corresponding to a triangulation.
4 Numerical results for equations with convex and nonconvex fluxes.
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Statement of the Problem and Notation

Consider the initial-boundary-value problem for a 2D hyperbolic
system of conservation laws:

~ut + ~f (~u)x + ~g(~u)y = 0, (x , y , t) ∈ Ω× (0,T ],

~u(x , y , t = 0) = ~u0(x , y), (x , y) ∈ Ω,

~u(x , y , t) = ~uBC(x , y , t), (x , y , t) ∈ ∂Ω× (0,T ].

Ω ⊂ R2 is the interior of a polygonal domain and ∂Ω its boundary.

T = {τi} is a conforming triangulation of Ω̄.

w̄n is a piecewise-constant approximation to the cell averages of u on
T at time tn.

S = {σk} is the staggered grid — the “dual” of T .

w̄n is the analogue of w̄n on S.
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Overview of the 2D Central Scheme

1. Perform a slope-limited piecewise-linear reconstruction on T .

w̄n −→ wn

2. Evolve the cell averages on the staggered grid S in time.

wn −→ w̄n, w̄n −→ w̄n+1

3. Project the solution from S back onto T .

w̄n+1 −→ wn+1, wn+1 −→ w̄n+1

The good, the bad and the ugly:

No need to solve a Riemann problem at each cell interface!

Need to define S in a “reasonable” manner.

Need to be able to perform a nonoscillatory reconstruction on S.
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The Minimum-Angle-Plane Reconstruction

The algorithm:

1 Given an element τi ∈ T
and its neighbors τij ,
1 ≤ j ≤ m, find all

(m+1
3

)
possible planes.

2 Find the plane that makes
the smallest angle with
the horizontal, and use it
to find a limited gradient.
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This “genuinely 2D” limiter behaves like minmod with a UNO flavor
(i.e., ≈ Durlofsky–Engquist–Osher but > 1st order near extrema).

No particular geometry and/or connectivity is assumed in the
design of the limiter, and there are no ad hoc parameters.

Limiter works exactly the same way on S as on T .
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The Staggered Grid

The dual elements:

1 Triangles ∆i .

2 Polygons Λij .

3 Parallelograms Πij .

The usual CFL condition

∆t < 1
3 ·mini |τi |/Smax,

Smax = fastest wave’s speed,
is good enough.
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Πi3Λi1 Λi2
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In particular:

If |∆i | = |Πij | = 0, the staggered grid becomes the Voronoi diagram.

If local speeds of propagation are used, this becomes Kurganov
& Petrova’s central-upwind staggered grid.
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Numerical Results for a Convex Flux

Riemann problem for the 2D inviscid Burgers equation

ut +
(

1
2u2

)
x

+
(

1
2u2

)
x

= 0.

Structured mesh with 6,272 elements and 19,041 dual elements.
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Numerical Results for a Nonconvex Flux

Riemann problem for the scalar equation ut + (sin u)x + (cos u)y = 0.

Kurganov, Petrova & B. Popov reported that less compressive /
higher order limiters (e.g., WENO5, MM2, SB) do not resolve the
resulting composite wave correctly. The MAPR passes this test!

Adapted mesh with 3,264 elements and 9,837 dual elements.
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