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The Big Picture

@ Motivation:

e How should we design “genuinely multidimensional” limiters on
unstructured grids?
o Need for a simple & fast predictor algorithm for the time-dependent
extension of L'-minimization FEM (Guermond & B. Popov).
@ Background:
e High-resolution central schemes: Nessyahu & Tadmor (1992), Jiang &
Tadmor (1998), Kurganov & Tadmor (2000), ...
o Extension to unstructured grids: Arminjon et al. (1997).
e Semi-discere central-upwind version: Kurganov & Petrova (2005).
@ Outline of the talk:
@ Hyperbolic systems of conservation laws and 2D central schemes.
@ The minimum-angle-plane reconstruction.
© Construction of the staggered grid corresponding to a triangulation.
© Numerical results for equations with convex and nonconvex ﬂuxes..ATjI
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Statement of the Problem and Notation

@ Consider the initial-boundary-value problem for a 2D hyperbolic
system of conservation laws:

e + F(0)x + &(d)y =0, (x.y,t) € Qx (0, T],
U(X,y,tZO):ﬁO(X,y), (X’y)EQa
d(x,y,t) = ugc(x,y,t), (x,y,t) €9 x(0,T].

e Q C R? is the interior of a polygonal domain and 9% its boundary.
o T = {7;} is a conforming triangulation of Q.

@ w' is a piecewise-constant approximation to the cell averages of u on

7T at time t".
o § = {o} is the staggered grid — the “dual” of 7.
@ " is the analogue of w" on S.
AiiM
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Overview of the 2D Central Scheme

1. Perform a slope-limited piecewise-linear reconstruction on 7.

3. Project the solution from S back onto 7.

t{]n—I—l mn—i—l7 mn—i—l V_Vn+1

The good, the bad and the ugly:
@ No need to solve a Riemann problem at each cell interface!
@ Need to define S in a “reasonable” manner.

@ Need to be able to perform a nonoscillatory reconstruction on S. A|M
4/9
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The Minimum-Angle-Plane Reconstruction

The algorithm:

@ Given an element 7; € T
and its neighbors 7j;,
1<j<m,findall (")
possible planes.

© Find the plane that makes
the smallest angle with
the horizontal, and use it
to find a limited gradient.

Vi2

Note that
@ This “genuinely 2D" limiter behaves like minmod with a UNO flavor
(i.e., =~ Durlofsky—Engquist—Osher but > 1* order near extrema).
@ No particular geometry and/or connectivity is assumed in the
design of the limiter, and there are no ad hoc parameters. m

@ Limiter works exactly the same way on S as on 7.
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The Staggered Grid

The dual elements:
@ Triangles A;. "
@ Polygons Aj;.

© Parallelograms I1;;. ﬁ%
The usual CFL condition M

At < 3 - min; |7]/Smax,

Smax = fastest wave's speed,
is good enough.

In particular:

e If |Aj| =|Mj| =0, the staggered grid becomes the Voronoi diagram.

@ If local speeds of propagation are used, this becomes Kurganov
& Petrova's central-upwind staggered grid. AilM
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Numerical Results for a Convex Flux

@ Riemann problem for the 2D inviscid Burgers equation

+ (%uz) =0.

X

uy + (%uz)

X

L.

@ Structured mesh with 6,272 elements and 19,041 dual elements. AiiM
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Numerical Results for a Nonconvex Flux

@ Riemann problem for the scalar equation u; + (sin u)x + (cos u), = 0.

e Kurganov, Petrova & B. Popov reported that less compressive /
higher order limiters (e.g., WENO5, MM2, SB) do not resolve the
resulting composite wave correctly. The MAPR passes this test!

L. k&

o Adapted mesh with 3,264 elements and 9,837 dual elements. AIM
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