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The Big Picture

Motivation:

Acoustics is not just the study of linearized equations!
There are many weakly-nonlinear models. How are they all related?
Which are “better”?
Numerical studies of the equations of nonlinear acoustics are scarce.

The “classical” equations of nonlinear acoustic:

Westervelt (1963) derived a nonlinear wave equation for the pressure of
highly-directional acoustic transmitters by ignoring the viscous terms in
Lighthill’s (1952) turbulence stress tensor for the acoustic field.
Kuznetsov (1971) expanding the barotropic equation of state of an
ideal gas in a power series.

Outline of the talk:
1 Physical setup, assumptions and the equations of motion.
2 Weakly-nonlinear approximations.
3 Some analytical results for a BVP.
4 Construction of “artificial” conservation laws.
5 Comparison of the models before and after shock-formation.
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Governing Equations of Motion

General assumptions and setup:
1 The fluid is lossless (≡ inviscid) and compressible.
2 The fluid is a perfect (≡ thermally and calorically ideal) barotropic gas.
3 Equilibrium (≡ constant) initial conditions.
4 Homentropic flow — i.e., the material derivative and gradient of the

entropy vanish everywhere.
5 1D flow along the x axis, inflow boundary at x = 0.
6 Signaling boundary conditions: a “pulse” of finite duration is

introduced into either the density/pressure or velocity field at x = 0.

Putting all this together results in the Euler equations, which can be
written as a (nondimensionalized) conservation law:(

%
%u

)
t

+

(
ε%u

ε%u2 + ε−1%γ/γ

)
x

= 0,

where (0 <)ε ≡ u0/c0 is the Mach number.
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Weakly-Nonlinear Approximations

Let φ(x , t) be the acoustic potential, i.e. ∇φ = (u(x , t), 0, 0).

The Euler equations admit the following potential formulation:

[1− ε(γ − 1)φt ]φxx − 2εφxφtx − φtt = 1
2ε2(γ + 1)(φx)

2φxx .

One might consider the näıve weakly-nonlinear approximation:

[1− ε(γ − 1)φt ]φxx − 2εφxφtx − φtt = 0.

Or the inviscid version of Kuznetsov’s equation:

φxx − [1 + ε(γ − 1)φt ]φtt = 2εφxφxt .

Or, perhaps, even Lighthill & Westervelt’s simplification:

φxx − [1 + ε(γ + 1)φt ]φtt = 0.
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One might consider the näıve weakly-nonlinear approximation:

[1− ε(γ − 1)φt ]φxx − 2εφxφtx − φtt = 0.

Or the inviscid version of Kuznetsov’s equation:

φxx − [1 + ε(γ − 1)φt ]φtt = 2εφxφxt .

Or, perhaps, even Lighthill & Westervelt’s simplification:

φxx − [1 + ε(γ + 1)φt ]φtt = 0.

Ivan Christov (TAMU) Weakly-nonlinear acoustics NM&A’06 4 / 10



Acceleration Wave Analysis

An acceleration wave is a jump discontinuity in at least one of the
derivatives of the primitive variable (e.g., %).

The basic idea: apply the method of characteristics at the wavefront
and derive and expression for the amplitude of the jump as a function
of time.

Blow-up of the acceleration wave (≡ the jump amplitude →∞)
means a shock formed in the respective primitive variable.

Pros: gives some theoretical results, which can be confirmed
numerically, and can be used in evaluating the models.

Cons: acceleration wave analysis ignores all other effects that lead to
shock-formation (e.g., nonlinear steepening).

For all of the equations and the BVP considered here the blow-up
time is the same: t∞ = 2c0/{(γ + 1)[ut ]t=0}.
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Potential Equation → System of Conservation Laws

From our assumptions, we know that φx = u and φt = (1− %)/ε .

So the (potential) LWE can be rewritten as[
(γ + 2)%− 1

2(γ + 1)%2
]
t
+ εux = 0,

ut + ε−1%x = 0.

But this is not yet a conservation law! So, let

%̃
def
= (γ + 2)%− 1

2(γ + 1)%2, s.t.

% =
1

γ + 1

[
γ + 2∓

√
(γ + 2)2 − 2(γ + 1)%̃

]
.

Finally, we get(
%̃
u

)
t

+

(
εu

−[ε(γ + 1)]−1
√

(γ + 2)2 − 2(γ + 1)%̃

)
x

= 0.

The other two weakly-nonlinear equations can be converted into
conservation laws in the same manner.
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The MUSCL–Hancock Scheme

Consider the generic 1D hyperbolic system of conservation laws:

Qt + F(Q)x = 0.

Introduce the conservative discretization:

Qn+1
i = Qn

i +
∆t

∆x

(
Fn

i− 1
2
− Fn

i+ 1
2

)
.

Perform a (linear) MUSCL extrapolation of the cell-interface values:

QL,R
i = Qi ∓ 1

2 minmod (Qi −Qi−1,Qi+1 −Qi ) .

Use predictor for the cell-interface temporal midvalues:

Q
L,R
i = QL,R

i +
1

2

∆t

∆x

[
F(QL

i )− F(QR
i )

]
.

Finally, use Q
R
i and Q

L
i+1 to set up a generalized Riemann problem at

each cell interface xi+ 1
2
, and the Harten–Lax–van Leer approx-

imate Riemann solver to obtain the flux Fn
i+ 1

2

(−1 ≤ i ≤ N − 1).
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Numerical Results for t < t∞
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Figure: Top row: density BC; bottom row: velocity BC; t = 0.5.
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Conclusions and Outlook

So, what’s a “good” weakly-nonlinear approximation? Well, it’s hard
to say ... no theoretical results but the numerics are illuminating.

It is clear, however, that if one must use a weakly-nonlinear
approximation, then the “näıve” one is superior to the “classical”
ones.

Black-box solver approach was crucial for the numerical simulations.
The MUSCL–Hancock scheme with the HLL solver worked well, but a
central scheme would be better (especially in 2D).

Further theoretical work is needed for the BVP — use the method of
characteristics beyond the wavefront and compute the time of
shock-formation.
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approximation, then the “näıve” one is superior to the “classical”
ones.

Black-box solver approach was crucial for the numerical simulations.
The MUSCL–Hancock scheme with the HLL solver worked well, but a
central scheme would be better (especially in 2D).

Further theoretical work is needed for the BVP — use the method of
characteristics beyond the wavefront and compute the time of
shock-formation.
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