Multiphysics problems at low Reynolds number
From deformable channels to spinning droplets

Ivan C. Christov
Assistant Professor
School of Mechanical Engineering
Purdue University

Frontiers in Mechanical Engineering and Sciences Multi-University Webinar Series
September 11, 2020
Research Disciplines

[Fluid Mechanics] [Soft Matter] [Nonlinear Dynamics]
[Wave Propagation] [Applied Mathematics]

Education

- Feynman Fellow, CNLS, Los Alamos National Laboratory
- NSF Fellow, MAE, Princeton
- PhD in Applied Mathematics (2011), Northwestern
- MS in Mathematics (2007), Texas A&M
- SB in Mathematics (Applied Option) (2005), MIT

Mission Statement

I combine advanced mathematics with state-of-the-art simulation to model flowing materials (fluids, solids, gases, or anything in between), rationalize experiments, and make progress on fundamental (basic scientific) questions at the interface of engineering, mathematics, and physics. Specifically, an overarching theme in my research is transport (e.g., as a means of effecting mixing or for mitigating separation).
Research Disciplines

[Fluid Mechanics] [Soft Matter] [Nonlinear Dynamics]
[Wave Propagation] [Applied Mathematics]

Education

▶ Feynman Fellow, CNLS, Los Alamos National Laboratory
▶ NSF Fellow, MAE, Princeton
▶ PhD in Applied Mathematics (2011), Northwestern
▶ MS in Mathematics (2007), Texas A&M
▶ SB in Mathematics (Applied Option) (2005), MIT

Mission Statement

I combine advanced mathematics with state-of-the-art simulation to model flowing materials (fluids, solids, gases, or anything in between), rationalize experiments, and make progress on fundamental (basic scientific) questions at the interface of engineering, mathematics, and physics. Specifically, an overarching theme in my research is transport (e.g., as a means of effecting mixing or for mitigating separation).
Outline: Our main objectives today

1. Rigorous, predictive theory of flow-induced deformation of 3D compliant microchannels.

2. Demonstrate shape and motion control of ferrofluid droplets by external magnetic fields.
Outline

1. Rigorous, predictive theory of flow-induced deformation of 3D compliant microchannels.

2. Demonstrate shape and motion control of ferrofluid droplets by external magnetic fields.
What do you picture when you hear “hydraulics”?

Figure: Industrial pipe network, https://www.steeljrv.com/

- Channel diameters ~ meters, flow ~ turbulent, materials hard ~ steel.
What do you picture when you hear “hydraulics”?

Figure: Industrial pipe network, https://www.steeljrv.com/

▷ Channel diameters ∼ meters, flow ∼ turbulent, materials hard ∼ steel.

Figure: Microfluidic chip for chemical analysis, https://darwin-microfluidics.com/

▷ Channel diameters ∼ 100s µm, flow ∼ laminar, materials soft ∼ PDMS (gel-like).
Flow-induced deformation of compliant microchannels

- Microchannels fabricated from PDMS are soft ⇒ deform due to flow.

(Gervais et al., Lab Chip, 2006)
Flow-induced deformation of compliant microchannels

- Microchannels fabricated from PDMS are soft ⇒ deform due to flow.

 (Gervais et al., Lab Chip, 2006)

- For a rigid conduit, \(q = \frac{R_h^{-1}}{h_0^3w/12\mu\ell} \Delta p \) (“Poiseuille’s law”).

 (Ozsun et al., JFM, 2013)
Flow-induced deformation of compliant microchannels

- Microchannels fabricated from PDMS are soft ⇒ deform due to flow.
 (Gervais et al., Lab Chip, 2006)

- For a rigid conduit, \(q = \frac{R_h^{-1}}{h_0^3w/12\mu\ell} \Delta p \) ("Poiseuille’s law").

- FSI ⇒ need deformation–pressure for pressure–flow relations: soft hydraulics problem.
Building blocks: deformation–pressure relations

- **2D planar, vertical deform.:** \(u_y(z) = t \frac{p(z)}{2G + \lambda} \)
 (e.g., Mukherjee et al., *Soft Matter*, 2013)

- **3D axisym. inclusion, radial deformation:** \(u_r(z) = \frac{a^2}{4} \frac{p(z)}{G} \)
 (e.g., Raj M et al., *Biomicrofluidics*, 2018)

- **3D axisym. shell, radial deformation:** \(u_r(z) = \frac{a^2}{t} \frac{p(z)}{E} \),
 \(\bar{E} = E/(1 - \nu_s^2) \)
 (e.g., Anand & Christov, *ZAMM*, 2020)
Building blocks: deformation–pressure relations

- **2D planar, vertical deform.**: \(u_y(z) = t \frac{p(z)}{2G+\lambda} \)

 (e.g., Mukherjee et al., *Soft Matter*, 2013)

- **3D axisym. inclusion, radial deformation**: \(u_r(z) = \frac{a}{4} \frac{p(z)}{G} \)

 (e.g., Raj M et al., *Biomicrofluidics*, 2018)

- **3D axisym. shell, radial deformation**: \(u_r(z) = \frac{a^2}{t} \frac{p(z)}{\bar{E}} \), \(\bar{E} = E/(1 - \nu_s^2) \)

 (e.g., Anand & Christov, *ZAMM*, 2020)

- **3D Cartesian, vertical deformation, first try**: \(\langle u_y \rangle_x(z) = \alpha \frac{p(z)}{\bar{E}} \)

 (Gervais et al., *Lab Chip*, 2006)

- **3D Cartesian, vertical deformation, our approach**: \(u_y(x, z) = F(x) \frac{p(z)}{\bar{E}} \)

The nonlinear flow rate–pressure drop relation

By definition of flow rate (capital letters = dimensionless):

\[
\frac{1}{\frac{q}{q}} = \int_{-1/2}^{+1/2} \int_{0}^{H(X,Z)} V_Z(X, Y, Z) \, dY \, dX = -\frac{1}{12} \frac{dP}{dZ} \int_{-1/2}^{+1/2} \left[1 + \beta \frac{U_c}{h_0} U_Y(X, Z) \right]^3 \, dX.
\]

- By definition of flow rate (capital letters = dimensionless):
- Lubrication theory
- Elasticity theory

\[\beta \propto P_c E_F (\text{geometry}).\]

(I.C.C. et al. (Purdue))
The nonlinear flow rate–pressure drop relation

By definition of flow rate (capital letters = dimensionless):

$$\frac{1}{q} = \int_{-1/2}^{+1/2} \int_{-1/2}^{+1/2} V_Z(X, Y, Z) \, dY \, dX = -\frac{1}{12} \frac{dP}{dZ} \left[1 + \frac{U_c}{h_0} \right] \int_{-1/2}^{+1/2} \beta U_Y(X, Z)^3 \, dX.$$

Integrate ODE for $P(Z)$ subject to $P(1) = 0$ (outlet gauge p):

$$12(1 - Z) = P(Z) \left[1 + S_1 \beta P(Z) + S_2 \beta^2 P(Z)^2 + S_3 \beta^3 P(Z)^3 \right].$$

S_i – constants found from X-variation of U_Y.

No fitting or calibration, just (known) dimensionless group:

$$\beta \propto \frac{P_c}{E_3}(\text{geometry}).$$

(Christov et al., *J. Fluid Mech.*, 2018)
Pressure drop: Experiment, numerics & theory

\[
\Delta p \text{ (kPA)}
\]

\[
\Delta p = \frac{12\mu l}{h_0^3 w} \left[1 + \frac{1}{480} \frac{w^4 \Delta p}{Bh_0} + \frac{1}{362,880} \left(\frac{w^4 \Delta p}{Bh_0} \right)^2 + \frac{1}{664,215,552} \left(\frac{w^4 \Delta p}{Bh_0} \right)^3 \right]^{-1} q.
\]

- Dashed line: rectangular conduit (\sim Poiseuille), $\Delta p = \frac{12\mu l}{h_0^3 w} q$.
- Solid curve is our perturbative theory:
Beyond plate theory: Thick structures

- Thin structure (plate-like, previous slide): \(u_{\text{max}} \ll t \sim h_0 \ll w \ll \ell \).
- Thick structure (half-space-like, this slide): \(u_{\text{max}} \ll h_0 \ll w \ll t \ll \ell \).

[Technical detail: plate theory models fail here due to strong dependence of \(\max u_y \propto (w/t)^3 \to 0 \).]
Use complex transients to enable new modalities of micromixing (low but finite Re)?

Outline

1. Rigorous, predictive theory of flow-induced deformation of 3D compliant microchannels.

2. Demonstrate shape and motion control of ferrofluid droplets by external magnetic fields.
Nonlinear dynamics of confined interfaces

“... the interfaces between two forms of bulk matter are responsible for some of the most unexpected actions. Of course, the border is sometimes frozen (the great Chinese wall). But in many areas, the overlap region is mobile, diffuse, and active ... ”

(a) Ferrofluid FSM (Lorenz *et al.*, *PoF*, 2003) (b) Miscible fingers (Jha *et al.*, *PRL*, 2011) (c) Dendrites (Bai *et al.*, *Energy Env. Sci.*, 2016)

Video from https://www.youtube.com/watch?v=sBr5fcHILLM
Tuning a magnetic field to generate controllable ferrofluid droplet spin

Hele-Shaw equations for a confined droplet:

\[\mathbf{v} = -\frac{b^2}{12\eta} \nabla \left(p - \frac{1}{2}\mu_0 \chi |\mathbf{H}|^2 \right), \]
\[\nabla \cdot \mathbf{v} = 0, \]
\[p = \tau \kappa - \frac{\mu_0}{2} (\mathbf{M} \cdot \hat{n})^2, \]
\[\mathbf{M} = \chi \mathbf{H}, \]
\[\frac{\partial h}{\partial t} = -(\mathbf{v} \cdot \hat{n})|\nabla h|. \]

(e.g., Lira & Miranda, Phys. Rev. E, 2016)
Introduction
Deformable channels
Spinning droplets

A video is worth 1000 pictures

- Circular interface is linearly unstable ... but weakly-nonlinearly stable.
- Unstable perturbations evolve into a nonlinear interfacial wave
 \Rightarrow circular droplet becomes spinning gear. Why?

How does nonlinearity arrests linear instability to create a wave?

Weakly nonlinear modal analysis:

$$\dot{\xi}_k = \Lambda(k)\xi_k + \sum_{k' \neq 0} F(k, k')\xi_{k'}\xi_{k-k'} + G(k, k')\dot{\xi}_{k'}\xi_{k-k'},$$

$$\Lambda(k) = \frac{|k|}{R^3}(1 - k^2) - \frac{2N_{Ba}}{R^4}|k| + 2(1 + \chi)N_{Br}|k| - \frac{2\chi\sqrt{N_{Ba}N_{Br}}}{R^2}ik|k|,$$

$$k_m = \sqrt{\frac{1}{3} \left[1 - \frac{2N_{Ba}}{R} + 2(1 + \chi)N_{Br}R^3 \right]}.$$

- Our theory suggests how to manipulate a circular droplet into spinning gear.
- We used nonlinear simulation to confirm.

Thank you for your attention!

visit us online at tmnt-lab.org

Transport: Modeling, Numerics, Theory

\[\nabla p = \mu \nabla^2 u \\
\nabla \cdot \sigma = 0
\]

\[c_t = \left(\mathcal{P}(c) c_z \right)_z \\
\Rightarrow c \sim \frac{\lambda}{c_0} \mathcal{E}(z/c_0)
\]

\[\mathcal{F} = \mu_k \mathcal{F}_k \\
\frac{dx}{dt} = v(x(t), t) \\
\varphi_{tt} - \varphi_{xx} = -V'(\varphi)
\]