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What do you picture when you hear “hydraulics”?

Figure: Industrial pipe network, https://www.steeljrv.com/

▷ Channel diameters ∼ meters, flow ∼ turbulent,
materials hard ∼ steel (E ∼ 100s GPa)

Figure: Microfluidic chip for chemical analysis,
https://darwin-microfluidics.com/

▷ Channel diameters ∼ 100s µm, flow ∼ laminar,
materials soft ∼ PDMS (gel, E ∼ 1 MPa)
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Compliant conduits in microfluidic devices
▶ Lab-on-a-chip fabrication via replica molding/soft lithography. (Sollier et al., Lab Chip, 2011)

▶ Microchannels fabricated from PDMS are soft ⇒ deform due to flow.
(Gervais et al., Lab Chip, 2006) (Ozsun et al., JFM, 2013)

images were acquired, filtered and rendered using Imaris 4.2

image analysis software (Bitplane Inc.). Cross-section contours

were obtained using built-in algorithms from the Matlab image

processing toolbox (Mathworks Inc., Natick, MA).

Results and discussion

Numerical simulations

In order to understand the nature of coupled fluid–structure

interactions, simulations focus on predicting the extent of the

channel deformation as well as the resulting pressure distribu-

tion inside the device. The models also reveal the extent of the

flow perturbation due to the channel deformation (Fig. 3).

These results (and eqn (12) describing the average fluid

velocity U(z) at a position z down the channel) show that the

average fluid velocity increases towards the channel outlet as

the channel cross-section decreases, while the volumetric flow

rate remains constant. This acceleration of the flow in a

deforming channel is a potential source of error in predicting

quantities such as the shear stress in a PDMS device for cell

attachment assays.

Confocal imaging and displacement measurements

Channel deformation was verified directly using confocal

microscopy. 3D rendered images of the channels capture the

shape of the channels under various flow conditions (Fig. 4).

The experimental data reveal the much higher deformation

predicted by the geometry change at the inlets of the device

(Fig. 5 and 6, first 3 data points). The rapid tapering of the

channel (Fig. 2) effectively produces an unconstrained

displacement (stress-free) boundary condition at the edges.

Both simulation and experimental data show that this effect

dies away within a few widths inside the channel. This entrance

effect is not taken into account in the simplified model

provided in eqn (10). However, since in most applications,

channels are much longer than wide, neglecting it is usually a

reasonable approximation.

By using the raw data, measurements of the maximum

displacement (located at mid channel width) were performed

and compared to the numerical simulations and scaling model

(eqn (10)). Two types of measurements were performed in both

250 mm and 500 mm wide channels: (i) A flow rate was specified

and the maximum displacement measured for various points

along the channel axis (Fig. 5 and 6). (ii) An axial position was

Fig. 2 Schematics of the microfluidic channel used (channel to scale).

Deflection is measured in the channel’s narrower region (250 mm or

500 mm). A series of triangular ticks (20 mm wide) are patterned at the

channel wall every 500 mm for accurate positioning of confocal images.

Fig. 3 3D simulation of the velocity (color) and pressure (grayscale)

profiles under an imposed pressure drop of 1 bar. The channel

geometry represented is 25 mm 6 500 mm 6 1 cm (Re = 15). Young’s

modulus is assumed to be of E = 1 MPa. The decreasing cross-sectional

area along the channel axis is responsible for the change in the fully

developed flow profile and for the acceleration of the flow.

Fig. 4 3D rendering of the entrance of two microfluidic channels of

the same material and geometry (250 mm wide, 26 mm thick, 1 cm long,

E = 2.2 MPa). Top channel: 300 mL min21 imposed flow rate (Re =

13). The tapering of the channel can be observed by comparing the

cross-sections in the first and second segments. Long dash lines:

topographic displacement curves. Bottom channel: 1 mL min21

imposed flow rate (no displacement reference measurement).

Fig. 5 Maximum displacement vs. axial position (E = 2.2 MPa). m:

26 mm 6 250 mm channel at a flow rate of 300 mL min21. &: 30 mm 6
500 mm channel at a flow rate of 800 mL min21. 6: Numerical

simulation under the same material and flow conditions.
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Big picture: internal flow fluid–structure interactions (FSIs)

Flow

Pressure dis-
tribution

Soft boundary
deformation

Figure: FSI feedback mechanism.
(Fung, Biomechanics, 1997).

▶ Need 1 deformation–pressure (u–p) to determine
change in cross-sectional area.

▶ Need 2 the flow rate–pressure grad. relation:

q =
(
−dp

dz

)
1
µF

(
geometry, p︸︷︷︸

FSI

, dp/dz︸ ︷︷ ︸
non-Newt.

)
.

Update classical result (Rubinow & Keller, J. Theor. Biol., 1972).

▶ The soft hydraulics problem is finding the
relationship f(∆p, q) = 0;

(Then, Rh ∼ − ∂f/∂q
∂f/∂∆p ?)
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1. Deformation–pressure relations
▶ 2D planar, vertical deformation: uy (z) = t

2G+λ p(z)

(e.g., Skotheim & Mahadevan, PRL 2004; Chakraborty & Chakraborty, PoF, 2010-11)

▶ 3D axisym. inclusion, radial deformation: ur (z) = a
4G p(z)

(e.g., Raj M et al., Biomicrofluidics, 2018)

▶ 3D axisym. shell, radial deformation: ur (z) = a2

tE
p(z)

E = E/(1 − ν2
s ) (e.g., Anand & Christov, ZAMM, 2021)

▶ 3D Cartesian, vertical deformation, our approach:

uy (x , z) = F (x)
E

p(z) ⇒ ⟨uy ⟩x (z) = αw
E

p(z) .

(Christov et al., JFM, 2018; Shidhore & Christov, JPCM, 2018; Wang & Christov,
PRSA, 2019; Anand et al., ASME JAM, 2020; Wang & Christov, PoF, 2021)
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2. Flow rate–pressure gradient relations
▶ Long and slender geometry ⇒ lubrication approximation. Momentum equation becomes:

∇⊥ · [η(γ̇)∇⊥vz ] = dp
dz , (∗)

∇⊥ is in the cross-sectional (x , y) or (r , θ) coords; flow is ≈ unidirectional in z , varying slowly.

▶ Flow rate is
q =

∫ ∫
A

vz dA. (∗∗)

▶ Using solution for vz from (∗) into (∗∗), obtain:

−dp
dz G

(
p,

dp
dz

)
= q,

the sought-after ODE for p = p(z) , . . . if we could find analytical vz expression. .
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Shear-dependent rheology of complex/bio fluids

www.bioanalysis-zone.com/five-microfluidic-device_loc
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Low-shear Newtonian plateau, 20
High-shear Newtonian plateau, 21
Carreau model
Ellis model
Power-law model

(Zhou & Papautsky, Lab Chip, 2019) (Christov, JPCM, 2021; fluid properties from Boger, Nature, 1977)

τ/γ̇ = η(γ̇) =
{

K |γ̇|n−1, Ostwald–de Waele (power-law);
η0

1+(τ/τ1/2)ne −1 , Ellis.

� Can find vz and q–dp/dz explicitly for these generalized Newtonian fluids!
I. C. Christov (Purdue) Non-Newtonian soft hydraulics APS DFD 2021 7 / 9

http://www.purdue.edu/
www.bioanalysis-zone.com/five-microfluidic-device_loc


Introduction Microfluidic FSI Basic theory Theory in action Summary

A new approach to the non-Newtonian case, allowing analytical result
1 For power-law (similar for Ellis):

q = −dp
dz

G(p,dp/dz), computed︷ ︸︸ ︷[
h2+1/nw

21+1/n(2 + 1/n)K 1/n

∣∣∣dp
dz

∣∣∣(1/n)−1
]

.

2 Span-wise averaged deformation–pressure relation:

h = h0 + ⟨uy ⟩x (z) = h0 + C︸︷︷︸
we calculated

p(z).

3 Using 1 + 2 :

−dp
dz = 21+n(2 + 1/n)nKqn

[h0 + Cp(z)]1+2nwn ,

and, voila:

p(z)
h0/C =

[
1 + n̂c

β︷ ︸︸ ︷(
CKLqn

h2+2n
0 wn

) (
1 − z

ℓ

) ] 1
2+2n

− 1.
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Figure: Dashed, ◦: n = 1; solid, ×: n = 0.5.

(justification for step 2 : Wang & Christov, PoF, 2021)

(curves: “full theory” validated to ANSYS, Anand et al., JNNFM, 2019)

for convenience: n̂c = 21+n(2 + 1/n)n(2 + 2n)
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Summary
▶ The ultimate objective of our research program is to uncover the physics of soft hydraulic

systems.

▶ Introduced the building blocks for predictive theories for flow of complex fluids in
compliant conduits.

• Took into account shear-dependent rheology and different types of wall deformation.
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