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• Flowing granular matter is a complex system.

• No general theory; can understand mixing in terms                               
of geometry and kinematics.
• In the Lagrangian frame we study flows:  
• Dynamical systems framework: hyperbolic vs. elliptic periodic points, 

Poincaré sections, stable & unstable manifolds, etc.

• Stirring by chaotic advection.

• Will study transport in a half-full sphere:
• All “interesting” dynamics occur in a thin surface layer.
• Motion (a) restricted to 2D surfaces or (b) fully-3D.
• Goal: Explore kinematic flow structures in (a) and (b).
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Granular flows

d�x/dt = �v(�x , t).

Movie credit: S.W. Meier
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A granular flow that everyone can enjoy

3Source: FoodNetwork’s Unwrapped [Season 1, Episode 1 “Bubble Gum Unwrapped”].
Thursday, January 27, 2011

http://www.ovguide.com/tv_episode/unwrapped-season-1-episode-1-bubble-gum-unwrapped-36215
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Phenomenology of tumbled granular flow

• Balance centrifugal and gravitational accel’ns: Fr = ω2R/g

• (a) Fr ≲ 10-5

• (b) 10-4 ≲ Fr ≲ 10-2 (10-3 ≲ Fr ≲ 10-1)

• (c) 10-1 ≲ Fr ≲ 1

• (d) Fr ≳ 1
4
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1.3.4. Flow regimes. For surface flows in tumblers, the flow can be categorized as
avalanching, rolling, cataracting or centrifuging [21], although variations in the clas-
sification scheme and naming conventions have been suggested [93, 95, 96]. Which
flow regime occurs depends on the Froude number, the ratio of inertial forces to the
gravitational force, Fr ¼ !2R=g, where ! is the rotational speed of the tumbler, R is
the radius of the tumbler and g is the acceleration due to gravity [21]. Typically the
Froude number is changed by varying the tumbler radius, R, or the rotation rate, !.
However, recent work has shown that the Froude number also characterizes the flow
when g is varied [97]. The nature of various flow regimes and their dependence on the
Froude number has been documented in detail [93, 95–97].

Figure 3 shows a circular cross section orthogonal to the axis of rotation of a
tumbler operated in the four flow regimes. Figure 3(a) depicts the avalanching regime
(also referred to as slumping [96]), which corresponds to approximately Fr < 10"5 in
DGSs [97]. However, this regime has also been observed up to Fr ¼ 10"3 depending
on factors such as the fill fraction, particle friction coefficients and particle to tumbler
size ratios [96]. The avalanching regime is characterized by intermittent avalanches of
granular material at the surface. The granular material rotates as a solid body with
the tumbler until it reaches the angle of marginal stability, !m. At this angle, an
avalanche occurs until the material settles at the static angle of repose, !s. As
described earlier, avalanche flows have been studied with continuum models [56–63].
However, mixing in avalanche flows in tumblers is typically studied
computationally through the use of discrete models such as the wedge
model [98, 99] and CA [100–105].

Figure 3(b) illustrates the rolling or continuous-flow regime, which corresponds
to approximately 10"4 < Fr < 10"2 in DGSs [95–97]. This is the flow regime con-
sidered in this review. It is characterized by a thin, rapidly flowing, flat surface layer
that flows at an angle with respect to the horizontal, the dynamic angle of repose,
!d [20–22, 77, 93, 95], which is a function of particle properties including size [91] and
surface roughness [106] as well as tumbler properties such as dimensions, end-wall
effects [91, 107] and rotation rate [91, 93, 108, 109]. Particles enter this flowing layer
on the upstream end from the fixed bed, which is in solid body rotation with the
tumbler. Particles exit the layer on the downstream end of the layer, returning to the
bed of solid body rotation. As the rotation rate is increased, the free surface becomes
slightly ‘s’-shaped giving rise to what is sometimes referred to as the cascading regime
in the range of 10"3 < Fr < 10"1 for DGSs [96]. We include the cascading flow in the

d

(a) (b) (c) (d)

s
m

Figure 3. Illustration of flow regimes in tumblers: (a) avalanching; (b) rolling/continuous-
flow/cascading; (c) cataracting; (d) centrifuging.

766 S. W. Meier et al.

[Meier, et al., Adv. Phys. (2007)]
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d

dt
x(t) =

�
vx(x(t), y(t), t), y(t) > −δ(x(t), t);

ωzy(t), otherwise.

d

dt
y(t) =

�
vy (x(t), y(t), t), y(t) > −δ(x(t), t);

− ωzx(t), otherwise.

Continuum model of granular flow in the rolling regime

5

D
ow

nl
oa

de
d 

B
y:

 [N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] A
t: 

04
:1

0 
28

 M
ay

 2
00

8 

bulk density in the fixed bed of solid body rotation, !b, are similar and that the flow
is pseudo-steady state, equation (1) becomes

@ð !uxðxÞ"ðxÞÞ
@x

¼ vyðx, $ "ðxÞÞ: ð2Þ

C

H y
x

R

d
g

L

z

Figure 14. 2d circular tumbler of radius R rotated about its centre, C, at rotation rate, !z,
where !z < 0 for clockwise rotation as shown. The vertical position of the free surface relative
to the axis of rotation is H. The distance between the centre of flowing layer and tumbler wall
is L. The thickness of the flowing layer is "(x).
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Figure 13. The surface velocity at x¼ 0, usurf, is a linear function of L (half the flowing layer
length) for all three tumbler geometries in figure 12 at the same rotation rate (2.0 RPM) for the
same particle size (1:07% 0:04mm black basalt glass particles). ^, half-full double cone; &,
half-full sphere; œ, half-full cylinder; ', 25%-full cylinder with correction for the solid body
rotation contribution to surface velocity. Reprinted with permission from [175]. ! 2006
Cambridge University Press.

Mixing and segregation of granular materials in tumblers 779

flowing layer

bulk (fixed bed)
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about the dynamics that actually create the flow. Granular systems in tumblers are
dominated by surface flows, and this represents a considerable simplification. The
primary assumption is that any flow in a tumbler operating in the rolling regime for
either DGSs or LGSs can be divided into two distinct regions: one thin, lens-like
region at the surface in which the particles flow downhill and a larger region below
the flowing layer in which the particles undergo essentially solid body rotation. All
mixing and segregation occurs in the thin flowing layer at the surface, and only very
slow rearrangements of particles occur below the flowing layer [64, 65, 173].
Segregation based on particle type can be modelled constitutively, as discussed
later. Thus, understanding the dynamics of the flowing layer leads to insight into
the dynamics of mixing and segregation for the entire system. Two key aspects of the
velocity in the flowing layer are needed for the continuum model: (1) the dependence
of the streamwise velocity on the depth in the flowing layer and (2) the dependence of
the streamwise surface velocity at the midlength of the flowing layer on the length of
the flowing layer. These two aspects are described in detail below.

2.1. Surface layer velocity: variation with depth

Consider first the dependence of the velocity with depth in the flowing layer, which
has been measured using several different techniques [77, 91]. Perhaps the most
complete measurements are those of Jain et al. using particle tracking velocimetry
(PTV) to measure the velocity profile for both DGSs and LGSs [71, 174]. They used a
quasi-2d circular tumbler filled with monodisperse spherical chrome steel particles
fully submerged in several different liquids as well as air. The study covered a range
of Froude numbers, bead sizes, fluid densities and fluid viscosities. Figure 11 shows
that, regardless of interstitial fluid, there is an approximately linear variation of
streamwise velocity with depth resulting in an approximately constant shear
rate in the upper three-quarters of the flowing layer. Near the bottom of the
flowing layer, the velocity profile deviates from a linear profile, approaching zero
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Figure 11. Left: Streamwise velocity variation with depth at x¼ 0 for 27 cases, both DGSs
and LGSs. Velocity is normalized by the velocity at the free surface, usurf. Right: Normalized
number density profiles scaled by Ntheory ¼ A=d2p, the number of particles of diameter, dp that
could fit in a square bin of area A for square packing. Results for three Froude numbers
(from 3:9" 10#5 to 4:0" 10#4) and interstitial fluids including air, water and glycerine–water
mixtures. Reprinted with permission from [71]. ! 2004 Cambridge University Press.

776 S. W. Meier et al.

vx as f’n of y for 27 dry & 
liquid granular mixtures

 vx  / vsurf

∂vx/∂y ≈ const.

Simple shear in the flowing layer
to a good approximation.

Jain et al., JFM (2004); Meier et al., Adv. Phys. (2007)

Thursday, January 27, 2011



2D Slice3D Tumbler

6Meier et al., Adv. Phys. (2007); Sturman et al., JFM (2008)

3D model is based on identical vertical 2D slices

ẋ =

�
γ̇[δ(x , z) + y ], y > −δ(x , z);

− ωzy , otherwise.

ẏ =

�
− ωzxy/δ(x , z), y > −δ(x , z);

ωzx , otherwise.

ż = 0

δ(x , z) = δ0(z)

�

1− x2

L(z)2

δ0(z) =

�
|ωz |
γ̇

L(z), L(z) =
�

R2 − z2

(and similarly for rotation about the x-axis...)
Thursday, January 27, 2011



Rotation about a single axis is an integrable flow

• Can calculate particle trajectories in 2D circular tumbler:

• In the flowing layer, shear modifies the center and rate & 
sense of rotation.

• Composing two rotations gives a linked twist map with 
non-trivial dynamics [Sturman et al., JFM (2008)].
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PWI CM - (δ/d = 1) CM - (δ/d = 7) Experiments 
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“Blinking” 3D tumbled granular flow

Linked twist map formalism applied to mixing in tumbled flows 151
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Figure 12. (a) The blinking protocol for a spherical mixer. Axes 1 and 2 are orthogonal
to each other and intersect at the origin of the sphere. (b) Top view of the surface velocity
profiles due to rotation around (i) axis 1 and (ii) axis 2. (c) (i) The flow in a fixed cross-section
for clockwise rotation around axis 1. (ii) Reorientation of free surface back to horizontal
by gently rotating counterclockwise around axis 1. (iii) The flow in a fixed cross-section for
counterclockwise rotation around axis 2. (iv) Reorientation of free surface back to horizontal
by gently rotating clockwise around axis 2.

3.1. Spherical tumbler mixers with constant angular velocity

Three-dimensional granular tumblers, and in particular spherical tumblers were
analysed in Pohlman et al. (2006a). Here we present the continuum model for
granular flow in the continuous-flow (rolling) regime in a spherical tumbler rotated
about two orthogonal axes labelled 1 and 2 in figure 12(a). A thorough derivation of
the continuum model for this case is presented in Meier et al. (2007).

3.1.1. Rotation about axis 1

In this section, we extend the system defined in § 2 to the case of three-dimensional
flow in a half-full sphere of radius R rotating at a constant rate, ω1, about axis 1 with
flow in a rapidly flowing free-surface layer orthogonal to the axis of rotation and at
an angle with respect to the horizontal (defined by the 1,2 plane) referred to as the
dynamic angle of repose. The coordinate system of the flow in the case of rotating
about axis 1 is defined with the direction of flow labelled as the x-direction with
the transverse direction labelled as the z-direction (parallel to axis 1) as shown in
figure 12(b) (i). The key assumption here is that particles have no velocity component
parallel to the axis of rotation. Thus in Cartesian coordinates, the velocity components
of particles in the bulk (bed of solid-body rotation) are given by

ẋ = ω1y =
∂ψb

∂y
,

ẏ = −ω1x = −∂ψb

∂x
,

ż = 0,

where

ψb =
1

2
ω1(x

2 + y2).
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profiles due to rotation around (i) axis 1 and (ii) axis 2. (c) (i) The flow in a fixed cross-section
for clockwise rotation around axis 1. (ii) Reorientation of free surface back to horizontal
by gently rotating counterclockwise around axis 1. (iii) The flow in a fixed cross-section for
counterclockwise rotation around axis 2. (iv) Reorientation of free surface back to horizontal
by gently rotating clockwise around axis 2.

3.1. Spherical tumbler mixers with constant angular velocity

Three-dimensional granular tumblers, and in particular spherical tumblers were
analysed in Pohlman et al. (2006a). Here we present the continuum model for
granular flow in the continuous-flow (rolling) regime in a spherical tumbler rotated
about two orthogonal axes labelled 1 and 2 in figure 12(a). A thorough derivation of
the continuum model for this case is presented in Meier et al. (2007).

3.1.1. Rotation about axis 1

In this section, we extend the system defined in § 2 to the case of three-dimensional
flow in a half-full sphere of radius R rotating at a constant rate, ω1, about axis 1 with
flow in a rapidly flowing free-surface layer orthogonal to the axis of rotation and at
an angle with respect to the horizontal (defined by the 1,2 plane) referred to as the
dynamic angle of repose. The coordinate system of the flow in the case of rotating
about axis 1 is defined with the direction of flow labelled as the x-direction with
the transverse direction labelled as the z-direction (parallel to axis 1) as shown in
figure 12(b) (i). The key assumption here is that particles have no velocity component
parallel to the axis of rotation. Thus in Cartesian coordinates, the velocity components
of particles in the bulk (bed of solid-body rotation) are given by

ẋ = ω1y =
∂ψb
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ẏ = −ω1x = −∂ψb
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,
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Particle motion: symmetric vs. non-symmetric case

9

x2f + y2
f + z2f = 1 + (r20 − 1)

1− δ20,2
1− δ20,1

.

Thm: A particle can change its distance r0 from the 
origin iff the axis of rotation is switched while it is in 
the flowing layer and δ0,1 ≠ δ0,2 :

Cor 1: Switching the axis of rotation while a 
particle is in the bulk does not change its r0.

Cor 2: For δ0,1 = δ0,2 , the system has a symmetry 
and motion is restricted to 2D invariant surfaces.

x20 + y2
0 + z20 = r20 ,

Thursday, January 27, 2011



 = 0.50

half-full quasi-2D 

E EH
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normally-elliptic curves of period-1 points

normally-hyperbolic curves of period-1 points

δ0,1 = δ0,2, θ1 = θ2

Period-1 points of the two-axis protocol

☞ Curves change stability type at a parabolic point.
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R̄
=

0.
62
R

R̄
=

0.
9R

normally- 
hyperbolic 
invariant 
curve in 
the bulk

Poincaré sections on the invariant surfaces and in-between
normally- 

elliptic 
invariant 
curve in 
the bulk
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symmetric weakly-non-symmetric

☞ Similar to effects of inertia in viscous laminar flows (Speetjens, Clercx, van Heijst, et al.).
Thursday, January 27, 2011



“KAM-like” tubes: 3D barriers to transport

12

Idea: In the symmetric case, construct a KAM-like tube by 
stacking the “islands” from adjacent invariant surfaces.

(a) view 1 (b) view 2

tube pinches-off at the parabolic point

Thursday, January 27, 2011



When do period-1 structures matter?

• Thm: P-1 invariant curves’ depth is max. at θmax = (1+δ0/R)π 
and min. at θmin= (δ0/R)π.
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transport channel

not your average perturbed double
saddle-node Hamiltonian dynamics
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Summary & Future Work
• Dynamical systems theory can tell us a lot about 

granular mixing.

• In 3D, new possibilities emerge: 
• Curves of normally-elliptic and -hyperbolic points.

• “KAM-like” tubes present barriers to transport.

• Must break invariant surfaces to allow for fully-3D transport.

• Manifolds structure is different from a perturbed Hamiltonian system.

• Challenges remain:
• Visualization of 3D transport: “KAM-like” tubes in the flowing layer, 

2D  manifolds in the non-symmetric case, lobe dynamics...

• Extension to non-circular geometries.
16
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Thank you for your attention!

Questions?
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