Structure of 3D chaotic transport in a tumbled granular flow in a sphere

Ivan C. Christov, Richard M. Lueptow, Julio M. Ottino, Rob Sturman, Stephen Wiggins

McCormick School of Engineering and Applied Science,
Northwestern University,
Department of Applied Mathematics, University of Leeds, School of Mathematics, University of Bristol

International Workshop on Physics of Mixing Lorentz Center, Leiden

January 25, 2011

MCGormick

Northwestern Engineering

Granular flows

- Flowing granular matter is a complex system.
- No general theory; can understand mixing in terms of geometry and kinematics.
- In the Lagrangian frame we study flows: $\mathrm{d} \vec{x} / \mathrm{d} t=\vec{v}(\vec{x}, t)$.
- Dynamical systems framework: hyperbolic vs. elliptic periodic points, Poincaré sections, stable \& unstable manifolds, etc.
- Stirring by chaotic advection.
- Will study transport in a half-full sphere:
- All "interesting" dynamics occur in a thin surface layer.
- Motion (a) restricted to 2D surfaces or (b) fully-3D.
- Goal: Explore kinematic flow structures in (a) and (b).

McGormick

Northwestern Engineering

A granular flow that everyone can enjoy

Source: FoodNetwork's Unwrapped [Season 1, Episode 1 "Bubble Gum Unwrapped"].

MCGormick

Northwestern Engineering

Phenomenology of tumbled granular flow

Figure 3. Illustration of flow regimes in tumblers: (a) avalanching; (b) rolling/continuousflow/cascading; (c) cataracting; (d) centrifuging. [Meier, et al., Adv. Phys. (2007)]

- Balance centrifugal and gravitational accel'ns: $\mathrm{Fr}=\omega^{2} R / g$
- (a) $\mathrm{Fr} \leqslant 10^{-5}$
-(b) $10^{-4} \leqslant \mathrm{Fr} \leqslant 10^{-2}\left(10^{-3} \leqslant \mathrm{Fr} \leqslant 10^{-1}\right)$
-(c) $10^{-1} \leqslant \mathrm{Fr} \leqslant 1$
- (d) $\mathrm{Fr} \geqslant 1$

MCGormick

Northwestern Engineering

Continuum model of granular flow in the rolling regime

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} x(t)= \begin{cases}v_{x}(x(t), y(t), t), & y(t)>-\delta(x(t), t) ; \\
\omega_{z} y(t), \\
v_{y}(x(t), y(t), t), & y(t)>-\delta(x(t), t) ; \\
-\omega_{z} x(t), & \text { otherwise }\end{cases} \\
& \frac{\mathrm{d}}{\mathrm{~d} t} y(t)=\left\{\begin{array}{l}
\text { otherwise. }
\end{array}\right.
\end{aligned}
$$

v_{x} as f'n of y for 27 dry \& liquid granular mixtures \downarrow
$\partial v_{x} / \partial y$
\approx const.

bulk (fixed bed)

MCGormick

Northwestern Engineering

3D model is based on identical vertical 2D slices

$$
\begin{aligned}
& \dot{x}=\left\{\begin{array}{lr}
\dot{\gamma}[\delta(x, z)+y], & y>-\delta(x, z) \\
-\omega_{z} y, & \text { otherwise }
\end{array}\right. \\
& \dot{y}=\left\{\begin{array}{lr}
-\omega_{z} x y / \delta(x, z), & y>-\delta(x, z) \\
\omega_{z} x, & \text { otherwise }
\end{array}\right. \\
& \dot{z}=0
\end{aligned}
$$

$$
\begin{aligned}
\delta(x, z) & =\delta_{0}(z) \sqrt{1-\frac{x^{2}}{L(z)^{2}}} \\
\delta_{0}(z) & =\sqrt{\frac{\left|\omega_{z}\right|}{\dot{\gamma}}} L(z), \quad L(z)=\sqrt{R^{2}-z^{2}}
\end{aligned}
$$

Rotation about a single axis is an integrable flow

- Can calculate particle trajectories in 2D circular tumbler:

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
x \\
y
\end{array}\right\}(t)=r_{0}\left\{\begin{array}{c}
\sin \\
\cos
\end{array}\right\}\left[-\omega_{z} t+\sin ^{-1}\left(\frac{x_{0}}{r_{0}}\right)\right] . \\
\left\{\begin{array}{l}
x \\
y
\end{array}\right\}(t)=\left\{\begin{array}{c}
\sqrt{L^{2}+\kappa} \sin \left[\sqrt{\omega_{z} \dot{\gamma}_{z}} t+\sin ^{-1}\left(\frac{x_{0}}{\sqrt{L^{2}+\kappa}}\right)\right] \\
-\sqrt{\frac{\omega_{1}}{\dot{\gamma}_{1}}} \sqrt{L^{2}-x(t)^{2}}
\end{array}\right] \sqrt{\frac{\omega_{1}}{\dot{\gamma}_{1}}} \sqrt{L^{2}+\kappa-x(t)^{2}}
\end{array}\right\} .
$$

- In the flowing layer, shear modifies the center and rate \& sense of rotation.
- Composing two rotations gives a linked twist map with non-trivial dynamics [Sturman et al., JFM (2008)].

MCGormick

Northwestern Engineering

"Blinking" 3D tumbled granular flow

$$
\begin{gathered}
\text { symmetric } \\
\delta_{0,1}=\delta_{0,2}\left(\omega_{1}=\omega_{2}\right)
\end{gathered}
$$

rotation 1

$C M-(\delta / d=7)$

$$
\delta_{0,1} \neq \delta_{0,2}\left(\omega_{1} \neq \omega_{2}\right)
$$

Juarez et al., EPL (2010)

MCGormick

Northwestern Engineering

Particle motion: symmetric vs. non-symmetric case

Thm: A particle can change its distance r_{0} from the origin iff the axis of rotation is switched while it is in the flowing layer and $\delta_{0,1} \neq \delta_{0,2}$:

$$
\begin{aligned}
& x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=r_{0}^{2} \\
& x_{f}^{2}+y_{f}^{2}+z_{f}^{2}=1+\left(r_{0}^{2}-1\right) \frac{1-\delta_{0,2}^{2}}{1-\delta_{0,1}^{2}} .
\end{aligned}
$$

Cor 1: Switching the axis of rotation while a particle is in the bulk does not change its r_{0}.

Cor 2: For $\delta_{0,1}=\delta_{0,2}$, the system has a symmetry and motion is restricted to 2D invariant surfaces.

MCGormick

Northwestern Engineering

Period-1 points of the two-axis protocol

normally-elliptic curves of period-1 points

normally-hyperbolic curves of period-1 points
Curves change stability type at a parabolic point.

McGormick

Northwestern Engineering

Poincaré sections on the invariant surfaces and in-between

normally-
hyperbolic
invariant
curve in the bulk
weakly-non-symmetric

Similar to effects of inertia in viscous laminar flows (Speetjens, Clercx, van Heijst, et al.).

MCGormick

Northwestern Engineering

"KAM-like" tubes: 3D barriers to transport

Idea: In the symmetric case, construct a KAM-like tube by stacking the "islands" from adjacent invariant surfaces.
tube pinches-off at the parabolic point

(a) view 1

(b) view 2

MCGormick

Northwestern Engineering

When do period-1 structures matter?

$\theta_{1}=\theta_{2}=\pi$
$\theta_{1}=\theta_{2}=\pi / 3$
$\theta_{1}=\pi / 3, \theta_{2}=\pi / 2$
$\theta_{1}=5 \pi / 4, \theta_{2}=\pi$

- Thm: P-1 invariant curves' depth is max. at $\theta_{\max }=\left(1+\delta_{0} / R\right) \pi$ and min. at $\theta_{\min }=\left(\delta_{0} / R\right) \pi$.

MCGormick

Northwestern Engineering

Manifolds: Progenitors of transport ($\omega_{1}=\omega_{2}, \theta_{1}=\theta_{2}$)

MCGormick

Northwestern Engineering

Taking a closer look: heteroclinic and homoclinic trajectories

Northwestern Engineering

Summary \& Future Work

- Dynamical systems theory can tell us a lot about granular mixing.
- In 3D, new possibilities emerge:
- Curves of normally-elliptic and -hyperbolic points.
- "KAM-like" tubes present barriers to transport.
- Must break invariant surfaces to allow for fully-3D transport.
- Manifolds structure is different from a perturbed Hamiltonian system.
- Challenges remain:
- Visualization of 3D transport: "KAM-like" tubes in the flowing layer, 2D manifolds in the non-symmetric case, lobe dynamics...
- Extension to non-circular geometries.

MC Cormick

Northwestern Engineering
The Laboratory for Complex Systems and Nonlinear Dynamics in Fluids and Cranular Materials

Thank you for your attention!

Questions?

