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() () e First, we compute the mixing norm, as a function of T, for many different permutations [1, then we
Cutting and Shuffling of a Line Segment 50 e (R g T 0.35 ' . . . average the curves into a single profile for each N and r (all with D = 0.5). Error bars in F1G. 4
-al ':' 'c!: o 'él " -':’-:"" _ _ show a standard deviation from the mean.
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40 I':,nln.n 'I'I'I'I'c!::ﬂl -;né::{ X a" | e Second, we find how many iterations (a number denoted by Tp,) are required to decrease the initial
| W 0257 ‘ lue of the mixi by 50%: i.e., ||ci||2( Tpe) = 0.5]|c;||2(0).
e Much like the “mixing” of a deck cards, interval exchange transformations (IETs) represent cutting ':5 .l:.lll.'.:ﬂl-':-'.'-I value of the mixing norm by 50%: i.e., HCJHQ( Pe) HCJH2( )
and shuffling [Krotter et al., 2012]. o 0.2¢ ' e Third, we rescale ||cj||2(T) = ||cj||2(T)/M, where M := ||c;||2(0), so that the mixing norm is in
e - _ _ the range [0, 1].
e In this case, “cards” can have nonuniform lengths and they may have a “color” assigned to them, = s ::'. u: 015 o
both of which may change during the mixing process. - -; : : .ﬂ - 01 . Foltljrth, we |plot H-CjH2(|T)/M vs. T/ Tpef,ﬂwhere Tp. is different for each curve, and we observe
| collapse onto a universal curve = a cut-ofl!
e Cutting and shuffling is to be distinguished from stretching and folding (chaotic mixing) — i_' 0.05
[Christov et al., 2011], and can arise when a granular material is broken into pieces and then put — 0 | | | | 17 | | |
back together in a volume/area preserving (isometric) way [Juarez et al., 2010]. 02 04 06 08 1 10 20 30 40 50 +N=4,1=125
position T 0.9 —+N=4,r=12 |
e Consider a cutting and shuffling IET construction with the following parameters: N=4r=14
; ber of sub e N introduced C cutting t FIGURE 2: Cutting and shuffling process with N = 5, 1 = [52413], r = 1.5, T = 50. (a) 0.8 N =5,r= 125"
- NUMDER OF SULSEEMENTS, T, INtroquEet I cath CUILNg SLEp, Space-time plot of the mixing process. (b) The mixing norm remains constant without diffusion. T N=35r=12
2. shuffling order, which is a permutation, I1, of the integers up to N, 0.7 | +N=5,r=14 |7
3. lengths of each subsegment (parametrized by a fixed adjacent subsegment length ratio r), ., 06f i Cut-off _
4. number of iterations performed, an integer T. Incorporating Diffusion 5_& o “J _________ )
cuts introduced = 04k :E _
at each iteration 4th initial Subsegment ' i
*’ e Consider a generic diffusion equation for the concentration c(x, t) of subsegment color, with diffusivity 0.3 7
initial 4 D: Oic = DE?)Q(C. Idea: Solve the diffusion eq. between c&s steps [Ashwin et al., 2002]. 0 | T
- - 2 N N
%Offcl)guratlon e Discretize the diffusion eq. with usual forward-time, central-space scheme on a lattice of unit spacings l ! N
B (Ax = At = 1) with periodic BCs: cf“ — ¢ = D(c;’Jrl —2cM + ¢ 1), where ¢ & ¢(x;, t") with 0.1 i gapiss S . %‘ - “ l
xi=i(i=1..,L)and t"=n(n=0,..., T). Stable ing%. L | | RIS | |
.. : e - o 1 2 2 6 20
e This gives rise to our diffusion rule: |¢; — (1 — 2D)¢; + Dcjy1 + Dcj_1..
I;_eia_;[lon 1 e Different r = different L; use dimensional analysis to connect T, for different L with fixed D.
| FIGURE 4: Cutting and shuffling with diffusion across different systems / mixing protocols ex-
I | 023, | N () e (0) hibits a universal mixing behavior when rescaled, which suggests the existence of a “cut-off.”
e Outlook: Is universality present when stretching & folding is superimposed [Kreczak et al., 2017]?
iteration 2 | I | 40 0.3/ ' What if diffusion is “optimized” [Froyland et al., 2016]?
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where k(T) is the number of continuous subsegments after T iterations, each of length /;, ¢; is the

color of the jth continuous subsegments, ¢ is the “average color” at T = 0. o Presented at the Poster Sessions of Dynamics Days 2018, Denver, Colorado. o




