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Dynamical Systems Framework for Tumbled Granular Flow

•Kinematic approach to mixing [Ott90] in a
quasi-2D tumbled granular flow leads to the dy-
namical system

d
dt
x(t) =

⎧⎪⎪⎨⎪⎪⎩
vx(x(t), y(t), t), y(t) > −δ(x(t), t);
ωz[y(t) + h(t)] − ġ(t), otherwise.

d
dt
y(t) =

⎧⎪⎪⎨⎪⎪⎩
vy(x(t), y(t), t), y(t) > −δ(x(t), t);
−ωz[x(t) + g(t)] − ḣ(t), otherwise.
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•Depth-averaged streamwise velocity v̄x � v̄x(x) & conservation of mass [KMGO99] give
vx(x, y, t) = 2v̄x(t)

[
1 + y/δ(x, t)

]
, vy(x, y, t) = −ωzx [y/δ(x, t)]2 ,

δ(x, t) = δ0(t)
{
1 − [x(t)/L(t)]2

}
, v̄x(t) = ωzL(t)

2/[2δ0(t)].

• Streamline crossing criterion: to achieve chaotic
mixing, superimposed streamlines at two differ-
ent times should intersect.

• Changing length and depth of flowing layer ⇒
streamline crossing in a quasi-2D square tumbler.

•Geometric similarity: ε := δ0(t)/L(t) = const.⇒
flowing layer adjusts instantaneously to changes
in container’s orientation.

• δ0 ∼ 5 to 12 particle diameters⇒ ε � 1.
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• If streamline crossing (⇒chaotic advection) were the only mixing mechanism, then as ε → 0 the
flow should become trivial. However, this is not true [EV99]. Why?

Streamline Jumping: A New Mixing Mechanism

• lim
ε→0 δ0 = 0⇒ flowing layer collapses onto the free surface becoming an interface.

• The average speed of a particle on the free surface becomes infinite:

V̄surf =
1
T f

∫ T f
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dx dt =
L̄
ε
→ ∞ as ε → 0.

• For consistency xexit = −xenter when crossing the flowing layer, x̃exit = −x̃enter+ 2g(tenter) w.r.t.C.

• Important point: g(tenter) � 0⇒ streamline jumping because x̃exit � −x̃enter!
• Streamline jumping is a necessary and sufficient condition for chaotic mixing in a convex tumbler,
rotated at a constant speed, with a vanishingly-thin flowing layer.

• Can confirm this through 500-period Poincaré sections.

• Chaotic regions exist only for φ � 0.5 as predicted.
• Important point: ε = 0 Poincaré sections are the template or skeleton of nearby ones.

Finite-Time Lyapunov Exponents and Manifold Structure

• Poincaré sections reveal unmixed regions (KAM islands) but mixing is characterized by the unsta-
ble manifold [Ott90].

• So, consider the (largest) finite-time Lyapunov exponent (FTLE) field of the flow

σ(X,Y; t0, τ) =
1
|τ| ln

√
Λmax(C(X,Y; t0, τ)),

•A Lagrangian coherent structure (LCS) is a ridge of σ [SLM05]; for a qualitatively analysis, can
identify ridges with the darkest areas in the figure.

•Mass flux across an LCS is negligible [SLM05] ⇒ LCSs are finite-time analogues to the sta-
ble/unstable manifolds of the flows with arbitrary time-dependance.

• Important point: manifold structure of the ε = 0 system is the template or skeleton for all ε � 1⇒
streamline jumping is the predominant mixing mechanism here.

Limiting Dynamics as a Piecewise Isometry

• The limiting (ε = 0) dynamical system is a piecewise isometry (PWI)— a discontinuous dynamical
system studied only recently [Goe02].

• PWIs exhibit the usual nonlinear dynamics: periodic points, quasi-periodicity, fractal structure,
global attractors and generally complex dynamics.

• But, PWIs do not possess the stretching and folding (Smale horseshoe) mechanism that leads to
chaos [Goe02, SMOW08].

• The PWI is an affine transformation Ω(t1, t2) : D(t1)→ R(t2) that can be written as

Ω(t1, t2) = T(t2) ◦ R ◦Q(t1, t2) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
− cos(ωzt̄) − sin(ωzt̄) 2g(t2)
− sin(ωzt̄) cos(ωzt̄) 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

• eig[Ω(t1, t2)] = {1, 1,−1} ∀t1, t2 ⇒ no stretching or compression, yet complex dynamics persist
due to the discontinuity.

• Cutting and shuffling dynamics: Q “shuffles” by mapping each point in the flowing layer to a new
location, R ◦ T “cuts” by reflecting & translating points along the flowing layer.

Summary and Open Questions

� The vanishing-flowing layer limit of quasi-2D tumbled granular flows is well defined.

� The ε = 0 mixing mechanism is streamline jumping.

� LCSs show the manifold structure of this non-smooth flow.

� Limiting dynamics can be framed using the new mathematics of PWIs.

◦ In 3D, what happens when multiple-axes rotation protocols are combined with streamline jumping?

◦ Can we study the ergodicity of PWIs and prove mathematically their mixing properties?

◦ Can we predict granular mixing a priori based on container geometry and PWIs?
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